Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System
A novel dedicated outdoor air system (DOAS) comprising a multi-stage direct expansion coil to produce extra-low temperature (XT) outdoor air to handle the entire space cooling demand has been confirmed more efficient than conventional systems. To further enhance the performance of XT-DOAS, the optim...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-05-01
|
Series: | Energies |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1073/11/5/1165 |
id |
doaj-bc15f3fdffd441fb85539ab40805806c |
---|---|
record_format |
Article |
spelling |
doaj-bc15f3fdffd441fb85539ab40805806c2020-11-24T20:40:35ZengMDPI AGEnergies1996-10732018-05-01115116510.3390/en11051165en11051165Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air SystemYani Bao0Wai Ling Lee1Jie Jia2Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Built Environment and Energy Utilization Engineering, Taiyuan University of Technology; Taiyuan 030024, ChinaA novel dedicated outdoor air system (DOAS) comprising a multi-stage direct expansion coil to produce extra-low temperature (XT) outdoor air to handle the entire space cooling demand has been confirmed more efficient than conventional systems. To further enhance the performance of XT-DOAS, the optimum number of cooling stages and treated outdoor air temperature need to be determined. This process requires the development of a coil performance model that takes into account the extra-high and extra-low entering air temperatures at the first and the last cooling stages. In this study, factory test data and field measurement data were used to develop such a performance model. Different statistical analyses were employed to validate the developed model. Based on the developed model, energy and exergy analyses were conducted to evaluate use of XT-DOAS for space cooling of a typical office building in Hong Kong. EnergyPlus was employed for the energy analysis. The laws of thermodynamics were used for the exergy analysis. Their combined results indicate that for better energy efficiency and performance for air-conditioning of office buildings in subtropical region, the optimum configuration for XT-DOAS is two cooling stages with a treated outdoor air temperature of 7 °C. The model developed and the energy and exergy analyses described will contribute significantly to future research in this area.http://www.mdpi.com/1996-1073/11/5/1165extra-low temperature outdoor air systemcoil performance modelsystem configurationenergy and exergy performance analysessubtropical office buildings |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yani Bao Wai Ling Lee Jie Jia |
spellingShingle |
Yani Bao Wai Ling Lee Jie Jia Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System Energies extra-low temperature outdoor air system coil performance model system configuration energy and exergy performance analyses subtropical office buildings |
author_facet |
Yani Bao Wai Ling Lee Jie Jia |
author_sort |
Yani Bao |
title |
Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System |
title_short |
Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System |
title_full |
Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System |
title_fullStr |
Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System |
title_full_unstemmed |
Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System |
title_sort |
exergy analyses and modelling of a novel extra-low temperature dedicated outdoor air system |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2018-05-01 |
description |
A novel dedicated outdoor air system (DOAS) comprising a multi-stage direct expansion coil to produce extra-low temperature (XT) outdoor air to handle the entire space cooling demand has been confirmed more efficient than conventional systems. To further enhance the performance of XT-DOAS, the optimum number of cooling stages and treated outdoor air temperature need to be determined. This process requires the development of a coil performance model that takes into account the extra-high and extra-low entering air temperatures at the first and the last cooling stages. In this study, factory test data and field measurement data were used to develop such a performance model. Different statistical analyses were employed to validate the developed model. Based on the developed model, energy and exergy analyses were conducted to evaluate use of XT-DOAS for space cooling of a typical office building in Hong Kong. EnergyPlus was employed for the energy analysis. The laws of thermodynamics were used for the exergy analysis. Their combined results indicate that for better energy efficiency and performance for air-conditioning of office buildings in subtropical region, the optimum configuration for XT-DOAS is two cooling stages with a treated outdoor air temperature of 7 °C. The model developed and the energy and exergy analyses described will contribute significantly to future research in this area. |
topic |
extra-low temperature outdoor air system coil performance model system configuration energy and exergy performance analyses subtropical office buildings |
url |
http://www.mdpi.com/1996-1073/11/5/1165 |
work_keys_str_mv |
AT yanibao exergyanalysesandmodellingofanovelextralowtemperaturededicatedoutdoorairsystem AT wailinglee exergyanalysesandmodellingofanovelextralowtemperaturededicatedoutdoorairsystem AT jiejia exergyanalysesandmodellingofanovelextralowtemperaturededicatedoutdoorairsystem |
_version_ |
1716826434118352896 |