Stabilities of Cubic Mappings in Fuzzy Normed Spaces
<p/> <p>Rassias(2001) introduced the pioneering cubic functional equation in the history of mathematical analysis: <inline-formula><graphic file="1687-1847-2010-150873-i1.gif"/></inline-formula> and solved the pertinent famous Ulam stability problem for this i...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2010/150873 |
id |
doaj-bc093321d8b74b25bb862151f19f015a |
---|---|
record_format |
Article |
spelling |
doaj-bc093321d8b74b25bb862151f19f015a2020-11-24T21:36:19ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472010-01-0120101150873Stabilities of Cubic Mappings in Fuzzy Normed SpacesGhaffari AliAlinejad Ahmad<p/> <p>Rassias(2001) introduced the pioneering cubic functional equation in the history of mathematical analysis: <inline-formula><graphic file="1687-1847-2010-150873-i1.gif"/></inline-formula> and solved the pertinent famous Ulam stability problem for this inspiring equation. This Rassias cubic functional equation was the historic transition from the following famous Euler-Lagrange-Rassias quadratic functional equation: <inline-formula><graphic file="1687-1847-2010-150873-i2.gif"/></inline-formula> to the cubic functional equations. In this paper, we prove the Ulam-Hyers stability of the cubic functional equation: <inline-formula><graphic file="1687-1847-2010-150873-i3.gif"/></inline-formula> in fuzzy normed linear spaces. We use the definition of fuzzy normed linear spaces to establish a fuzzy version of a generalized Hyers-Ulam-Rassias stability for above equation in the fuzzy normed linear space setting. The fuzzy sequentially continuity of the cubic mappings is discussed.</p> http://www.advancesindifferenceequations.com/content/2010/150873 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ghaffari Ali Alinejad Ahmad |
spellingShingle |
Ghaffari Ali Alinejad Ahmad Stabilities of Cubic Mappings in Fuzzy Normed Spaces Advances in Difference Equations |
author_facet |
Ghaffari Ali Alinejad Ahmad |
author_sort |
Ghaffari Ali |
title |
Stabilities of Cubic Mappings in Fuzzy Normed Spaces |
title_short |
Stabilities of Cubic Mappings in Fuzzy Normed Spaces |
title_full |
Stabilities of Cubic Mappings in Fuzzy Normed Spaces |
title_fullStr |
Stabilities of Cubic Mappings in Fuzzy Normed Spaces |
title_full_unstemmed |
Stabilities of Cubic Mappings in Fuzzy Normed Spaces |
title_sort |
stabilities of cubic mappings in fuzzy normed spaces |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1839 1687-1847 |
publishDate |
2010-01-01 |
description |
<p/> <p>Rassias(2001) introduced the pioneering cubic functional equation in the history of mathematical analysis: <inline-formula><graphic file="1687-1847-2010-150873-i1.gif"/></inline-formula> and solved the pertinent famous Ulam stability problem for this inspiring equation. This Rassias cubic functional equation was the historic transition from the following famous Euler-Lagrange-Rassias quadratic functional equation: <inline-formula><graphic file="1687-1847-2010-150873-i2.gif"/></inline-formula> to the cubic functional equations. In this paper, we prove the Ulam-Hyers stability of the cubic functional equation: <inline-formula><graphic file="1687-1847-2010-150873-i3.gif"/></inline-formula> in fuzzy normed linear spaces. We use the definition of fuzzy normed linear spaces to establish a fuzzy version of a generalized Hyers-Ulam-Rassias stability for above equation in the fuzzy normed linear space setting. The fuzzy sequentially continuity of the cubic mappings is discussed.</p> |
url |
http://www.advancesindifferenceequations.com/content/2010/150873 |
work_keys_str_mv |
AT ghaffariali stabilitiesofcubicmappingsinfuzzynormedspaces AT alinejadahmad stabilitiesofcubicmappingsinfuzzynormedspaces |
_version_ |
1725941659760328704 |