Design and Embedded Implementation of a Power Management Controller for Wind-PV-Diesel Microgrid System

This paper presents an implementation of real-time energy management systems (EMS) to maximize the efficiency of the electricity distribution in an isolated hybrid microgrid system (HMGS) containing photovoltaic modules, wind turbine, battery energy storage system, and diesel generator (DG) which is...

Full description

Bibliographic Details
Main Authors: M. Boussetta, S. Motahhir, R. El Bachtiri, A. Allouhi, M. Khanfara, Y. Chaibi
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2019/8974370
Description
Summary:This paper presents an implementation of real-time energy management systems (EMS) to maximize the efficiency of the electricity distribution in an isolated hybrid microgrid system (HMGS) containing photovoltaic modules, wind turbine, battery energy storage system, and diesel generator (DG) which is used as a backup source. These systems are making progress worldwide thanks to their respect for the environment. However, hybridization of several sources requires power flow control (PFC). For this reason, in this work, a proper energy management system is developed using LabVIEW software and embedded in a suitable platform for the real-time management of the hybrid energy system. The developed EMS is tested and validated through a small-scale application which accurately represents the case study of an isolated mosque located in a remote area of Morocco. The aim of this paper is to (i) propose a novel modelling method and real-time monitoring interface under the LabVIEW software based on the real data obtained by an optimal sizing previously made using Homer-pro software and (ii) implement the power control system on a low-consumption embedded platform that is the Raspberry-pi3.
ISSN:1110-662X
1687-529X