Spin Cross-Over (SCO) Complex Based on Unsymmetrical Functionalized Triazacyclononane Ligand: Structural Characterization and Magnetic Properties

The unsymmetrical ligand 1-(2-aminophenyl)-4,7-bis(pyridin-2-ylmethyl)-1,4,7-triazacyclononane (L6) has been prepared and characterized by NMR spectroscopy. The L6 ligand is based on the triazamacrocycle (tacn) ring that is functionalized by two flexible 2-pyridylmethyl and one rigid 2-aminophenyl g...

Full description

Bibliographic Details
Main Authors: Merzouk Halit, Mélissa Roger, Véronique Patinec, Said Yefsah, Carlos J. Gómez-García, Smail Triki
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Magnetochemistry
Subjects:
Online Access:http://www.mdpi.com/2312-7481/5/1/19
Description
Summary:The unsymmetrical ligand 1-(2-aminophenyl)-4,7-bis(pyridin-2-ylmethyl)-1,4,7-triazacyclononane (L6) has been prepared and characterized by NMR spectroscopy. The L6 ligand is based on the triazamacrocycle (tacn) ring that is functionalized by two flexible 2-pyridylmethyl and one rigid 2-aminophenyl groups. Reaction of this ligand with Fe(ClO4)2·xH2O led to the complex [Fe(L6)](ClO4)2 (1), which was characterized as the first Fe(II) complex based on the unsymmetrical N-functionalized tacn ligand. The crystal structure revealed a discrete monomeric [FeL6]2+ entity in which the unsymmetrical N-functionalized triazacyclononane molecule (L6) acts as hexadentate ligand. As observed in the few parent examples that are based on the symmetrical N-functionalized tacn ligands, the triazacyclononane ring is facially coordinated and the N-donor atoms of the three functional groups (two pyridine and one aniline groups) are disposed in the same side of the tacn ring, leading to a distorted FeN6 environment. The magnetic studies of 1 revealed the presence of an incomplete spin crossover (SCO) transition above 425 K, whose progress would be prevented by a very exothermic thermal decomposition at ca. 472 K, as shown by thermogravimetric and DSC measurements.
ISSN:2312-7481