A Finite Element Analysis to Compare Stress Distribution on Extra-Short Implants with Two Different Internal Connections

Background: The goal of this study was to analyze the stress distribution on two types of extra-short dental implants with 5 mm of length: An internal hexagon (IH) and morse taper connection (MT). Methods: The three-dimensional model was composed of trabecular and cortical bone, a crown, an extra-sh...

Full description

Bibliographic Details
Main Authors: Silvia Helena García-Braz, María Prados-Privado, Luiz Carlos Silveira Zanatta, José Luis Calvo-Guirado, Juan Carlos Prados-Frutos, Sérgio Alexandre Gehrke
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/8/8/1103
Description
Summary:Background: The goal of this study was to analyze the stress distribution on two types of extra-short dental implants with 5 mm of length: An internal hexagon (IH) and morse taper connection (MT). Methods: The three-dimensional model was composed of trabecular and cortical bone, a crown, an extra-short dental implant and their components. An axial load of 150 N was applied and another inclined 30° with the same magnitude. Results: Stress concentrations on the IH implant are observed in the region of the first threads for the screw. However, in the MT implant the highest stress occurs at the edges of the upper implant platform. Conclusions: In view of the results obtained in this study the two types of prosthetic fittings present a good stress distribution. The Morse taper connections presented better behavior than the internal in both loading configurations.
ISSN:2077-0383