Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing
In this paper, in order to understand the influence of the unbalanced coefficient of composite laminates on the static aeroelasticity of high aspect wings, a series of numerical simulation calculations were carried out, and this work wants to provide some reference for the structural design of aircr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/3949078 |
id |
doaj-bbed64e7a02d4a708ce1fc40ca83979a |
---|---|
record_format |
Article |
spelling |
doaj-bbed64e7a02d4a708ce1fc40ca83979a2021-09-27T00:51:35ZengHindawi LimitedInternational Journal of Aerospace Engineering1687-59742021-01-01202110.1155/2021/3949078Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio WingJinYang Li0JunLi Wang1ZhiGui Ren2WeiFeng Wei3Mechanical Engineering CollegeMechanical Engineering CollegeMechanical Engineering CollegeMechanical Engineering CollegeIn this paper, in order to understand the influence of the unbalanced coefficient of composite laminates on the static aeroelasticity of high aspect wings, a series of numerical simulation calculations were carried out, and this work wants to provide some reference for the structural design of aircraft. Considering the influence of geometric nonlinearity, the unidirectional fluid-solid coupling calculation method based on loose coupling is used to control the change of unbalanced coefficient of laminates on the basis of layering angle, layering thickness, and layering region, so as to observe the changes caused to the wings. The relationship between the unbalanced coefficient and the constant thickness layup and the variable thickness layup with 0° and ±45° layup angles was studied, respectively. Then, the layup angle of 90° was added to study the influence of the unbalanced coefficient on the static aeroelasticity of the wing structure with the change of the layup angle and the different choice of layup region. The results show that the deformation is the smallest when the unbalanced coefficient is 0.5, and the deformation trend is evenly distributed along both sides when the unbalanced coefficient is 0.5. When the unbalanced coefficient is changed, adding the 90° layup angle can significantly reduce the overall deformation of the wing and show different sensitivity characteristics to different layup areas. The increase of the unbalanced coefficient makes the chordal displacement gradually change from linear distribution to nonlinear distribution along the spread direction, and the displacement will gradually decrease.http://dx.doi.org/10.1155/2021/3949078 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
JinYang Li JunLi Wang ZhiGui Ren WeiFeng Wei |
spellingShingle |
JinYang Li JunLi Wang ZhiGui Ren WeiFeng Wei Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing International Journal of Aerospace Engineering |
author_facet |
JinYang Li JunLi Wang ZhiGui Ren WeiFeng Wei |
author_sort |
JinYang Li |
title |
Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing |
title_short |
Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing |
title_full |
Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing |
title_fullStr |
Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing |
title_full_unstemmed |
Effects of Unbalanced Lamination Parameters on the Static Aeroelasticity of a High Aspect Ratio Wing |
title_sort |
effects of unbalanced lamination parameters on the static aeroelasticity of a high aspect ratio wing |
publisher |
Hindawi Limited |
series |
International Journal of Aerospace Engineering |
issn |
1687-5974 |
publishDate |
2021-01-01 |
description |
In this paper, in order to understand the influence of the unbalanced coefficient of composite laminates on the static aeroelasticity of high aspect wings, a series of numerical simulation calculations were carried out, and this work wants to provide some reference for the structural design of aircraft. Considering the influence of geometric nonlinearity, the unidirectional fluid-solid coupling calculation method based on loose coupling is used to control the change of unbalanced coefficient of laminates on the basis of layering angle, layering thickness, and layering region, so as to observe the changes caused to the wings. The relationship between the unbalanced coefficient and the constant thickness layup and the variable thickness layup with 0° and ±45° layup angles was studied, respectively. Then, the layup angle of 90° was added to study the influence of the unbalanced coefficient on the static aeroelasticity of the wing structure with the change of the layup angle and the different choice of layup region. The results show that the deformation is the smallest when the unbalanced coefficient is 0.5, and the deformation trend is evenly distributed along both sides when the unbalanced coefficient is 0.5. When the unbalanced coefficient is changed, adding the 90° layup angle can significantly reduce the overall deformation of the wing and show different sensitivity characteristics to different layup areas. The increase of the unbalanced coefficient makes the chordal displacement gradually change from linear distribution to nonlinear distribution along the spread direction, and the displacement will gradually decrease. |
url |
http://dx.doi.org/10.1155/2021/3949078 |
work_keys_str_mv |
AT jinyangli effectsofunbalancedlaminationparametersonthestaticaeroelasticityofahighaspectratiowing AT junliwang effectsofunbalancedlaminationparametersonthestaticaeroelasticityofahighaspectratiowing AT zhiguiren effectsofunbalancedlaminationparametersonthestaticaeroelasticityofahighaspectratiowing AT weifengwei effectsofunbalancedlaminationparametersonthestaticaeroelasticityofahighaspectratiowing |
_version_ |
1716867499337711616 |