Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells
The mechanisms underlying the positioning of eukaryotic organelles remain elusive. Here Lin et al. use imaging and a mathematical model to show that microtubule-based transport and active diffusion and actin-based polar drift act together to facilitate even distribution of peroxisomes in filamentous...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2016-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms11814 |
Summary: | The mechanisms underlying the positioning of eukaryotic organelles remain elusive. Here Lin et al. use imaging and a mathematical model to show that microtubule-based transport and active diffusion and actin-based polar drift act together to facilitate even distribution of peroxisomes in filamentous fungi. |
---|---|
ISSN: | 2041-1723 |