The Effect of NaCl/pH on Colloidal Nanogold Produced by Pulsed Spark Discharge

A green method, using pulsed spark discharge (PSD) to synthesize colloidal gold, is studied in this thesis. PSD uses spark discharge to synthesize gold nanoparticles (AuNPs) in deionized water (DIW) and/or ethanol (EtOH). While gold nanoparticles have widespread applications in many fields, especial...

Full description

Bibliographic Details
Main Authors: Kuo-Hsiung Tseng, Chin-Liang Hsieh, Jen-Chuen Huang, Der-Chi Tien
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/612324
Description
Summary:A green method, using pulsed spark discharge (PSD) to synthesize colloidal gold, is studied in this thesis. PSD uses spark discharge to synthesize gold nanoparticles (AuNPs) in deionized water (DIW) and/or ethanol (EtOH). While gold nanoparticles have widespread applications in many fields, especially for the human body, in use them must overcome the influence of NaCl and pH value; therefore, this study adds NaCl into PSD-AuNPs to simulate the human body to study its stability. Furthermore, a variety of protectants are added in an attempt to determine the best protectant for AuNPs and improve biologically compatible potency. From the results of this study, adding the long-chain-polymer Carboxymethyl cellulose (CMC) or Polyvinyl pyrrolidone (PVP-k30) can prevent nanogold from aggregation and precipitation in NaCl or different pH value and maintain the characteristic of nanogold dispersion by raising the repulsive force between the particles. The results of this study can be a reference of nanogold applying in biomedical science.
ISSN:1687-4110
1687-4129