P2A-Fluorophore Tagging of BRAF Tightly Links Expression to Fluorescence In Vivo.

The Braf proto-oncogene is a key component of the mitogen-activated protein kinase signaling cascade and is a critical regulator of both normal development and tumorigenesis in a variety of tissues. In order to elucidate BRAF's differing roles in varying cell types, it is important to understan...

Full description

Bibliographic Details
Main Authors: J Edward van Veen, Daphne R Pringle, Martin McMahon
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4922626?pdf=render
Description
Summary:The Braf proto-oncogene is a key component of the mitogen-activated protein kinase signaling cascade and is a critical regulator of both normal development and tumorigenesis in a variety of tissues. In order to elucidate BRAF's differing roles in varying cell types, it is important to understand both the pattern and timing of BRAF expression. Here we report the production of a mouse model that links the expression of Braf with the bright red fluorescent protein, tdTomato. We have utilized a P2A knock-in strategy, ensuring that BRAF and the fluorophore are expressed from the same endogenous promoter and from the same bicistronic mRNA transcript. This mouse model (BrafTOM) shows bright red fluorescence in organs and cell types known to be sensitive to BRAF perturbation. We further show that on a cell-by-cell basis, fluorescence correlates with BRAF protein levels. Finally, we extend the utility of this mouse by demonstrating that the remnant P2A fragment attached to BRAF acts as a suitable epitope for immunoprecipitation and biochemical characterization of BRAF in vivo.
ISSN:1932-6203