A resonance problem for the p-laplacian in $R^N$
We show the existence of a weak solution for the problem $$ -Delta_p u=lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),quad uinmathcal{D}^{1,p}(mathbb{R}^N), $$ where, 2 les than p less than N$, $lambda_1$ is the first eigenvalue of the $p$-Laplacian on $mathcal{D}^{1,p}(mathbb{R}^N)$ relative to the radially...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2005-10-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2005/112/abstr.html |
id |
doaj-bbcc66538da3494fb39d9d884ed950f5 |
---|---|
record_format |
Article |
spelling |
doaj-bbcc66538da3494fb39d9d884ed950f52020-11-25T00:40:05ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912005-10-01200511218A resonance problem for the p-laplacian in $R^N$Gustavo Izquierdo B.Gabriel Lopez G.We show the existence of a weak solution for the problem $$ -Delta_p u=lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),quad uinmathcal{D}^{1,p}(mathbb{R}^N), $$ where, 2 les than p less than N$, $lambda_1$ is the first eigenvalue of the $p$-Laplacian on $mathcal{D}^{1,p}(mathbb{R}^N)$ relative to the radially symmetric weight $h(x)=h(|x|)$. In this problem, $g(s)$ is a bounded function for all $sinmathbb{R}$, $ain L^{(p^{*})'}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $fin L^{(p^{*})'}(mathbb{R}^N)$. To establish an existence result, we employ the Saddle Point Theorem of Rabinowitz [9] and an improved Poincare inequality from an article of Alziary, Fleckinger and Takac [2].http://ejde.math.txstate.edu/Volumes/2005/112/abstr.htmlResonancep-Laplacianimproved Poincare inequality. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gustavo Izquierdo B. Gabriel Lopez G. |
spellingShingle |
Gustavo Izquierdo B. Gabriel Lopez G. A resonance problem for the p-laplacian in $R^N$ Electronic Journal of Differential Equations Resonance p-Laplacian improved Poincare inequality. |
author_facet |
Gustavo Izquierdo B. Gabriel Lopez G. |
author_sort |
Gustavo Izquierdo B. |
title |
A resonance problem for the p-laplacian in $R^N$ |
title_short |
A resonance problem for the p-laplacian in $R^N$ |
title_full |
A resonance problem for the p-laplacian in $R^N$ |
title_fullStr |
A resonance problem for the p-laplacian in $R^N$ |
title_full_unstemmed |
A resonance problem for the p-laplacian in $R^N$ |
title_sort |
resonance problem for the p-laplacian in $r^n$ |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2005-10-01 |
description |
We show the existence of a weak solution for the problem $$ -Delta_p u=lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),quad uinmathcal{D}^{1,p}(mathbb{R}^N), $$ where, 2 les than p less than N$, $lambda_1$ is the first eigenvalue of the $p$-Laplacian on $mathcal{D}^{1,p}(mathbb{R}^N)$ relative to the radially symmetric weight $h(x)=h(|x|)$. In this problem, $g(s)$ is a bounded function for all $sinmathbb{R}$, $ain L^{(p^{*})'}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $fin L^{(p^{*})'}(mathbb{R}^N)$. To establish an existence result, we employ the Saddle Point Theorem of Rabinowitz [9] and an improved Poincare inequality from an article of Alziary, Fleckinger and Takac [2]. |
topic |
Resonance p-Laplacian improved Poincare inequality. |
url |
http://ejde.math.txstate.edu/Volumes/2005/112/abstr.html |
work_keys_str_mv |
AT gustavoizquierdob aresonanceproblemfortheplaplacianinrn AT gabriellopezg aresonanceproblemfortheplaplacianinrn AT gustavoizquierdob resonanceproblemfortheplaplacianinrn AT gabriellopezg resonanceproblemfortheplaplacianinrn |
_version_ |
1725291511194583040 |