A resonance problem for the p-laplacian in $R^N$

We show the existence of a weak solution for the problem $$ -Delta_p u=lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),quad uinmathcal{D}^{1,p}(mathbb{R}^N), $$ where, 2 les than p less than N$, $lambda_1$ is the first eigenvalue of the $p$-Laplacian on $mathcal{D}^{1,p}(mathbb{R}^N)$ relative to the radially...

Full description

Bibliographic Details
Main Authors: Gustavo Izquierdo B., Gabriel Lopez G.
Format: Article
Language:English
Published: Texas State University 2005-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2005/112/abstr.html
id doaj-bbcc66538da3494fb39d9d884ed950f5
record_format Article
spelling doaj-bbcc66538da3494fb39d9d884ed950f52020-11-25T00:40:05ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912005-10-01200511218A resonance problem for the p-laplacian in $R^N$Gustavo Izquierdo B.Gabriel Lopez G.We show the existence of a weak solution for the problem $$ -Delta_p u=lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),quad uinmathcal{D}^{1,p}(mathbb{R}^N), $$ where, 2 les than p less than N$, $lambda_1$ is the first eigenvalue of the $p$-Laplacian on $mathcal{D}^{1,p}(mathbb{R}^N)$ relative to the radially symmetric weight $h(x)=h(|x|)$. In this problem, $g(s)$ is a bounded function for all $sinmathbb{R}$, $ain L^{(p^{*})'}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $fin L^{(p^{*})'}(mathbb{R}^N)$. To establish an existence result, we employ the Saddle Point Theorem of Rabinowitz [9] and an improved Poincare inequality from an article of Alziary, Fleckinger and Takac [2].http://ejde.math.txstate.edu/Volumes/2005/112/abstr.htmlResonancep-Laplacianimproved Poincare inequality.
collection DOAJ
language English
format Article
sources DOAJ
author Gustavo Izquierdo B.
Gabriel Lopez G.
spellingShingle Gustavo Izquierdo B.
Gabriel Lopez G.
A resonance problem for the p-laplacian in $R^N$
Electronic Journal of Differential Equations
Resonance
p-Laplacian
improved Poincare inequality.
author_facet Gustavo Izquierdo B.
Gabriel Lopez G.
author_sort Gustavo Izquierdo B.
title A resonance problem for the p-laplacian in $R^N$
title_short A resonance problem for the p-laplacian in $R^N$
title_full A resonance problem for the p-laplacian in $R^N$
title_fullStr A resonance problem for the p-laplacian in $R^N$
title_full_unstemmed A resonance problem for the p-laplacian in $R^N$
title_sort resonance problem for the p-laplacian in $r^n$
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2005-10-01
description We show the existence of a weak solution for the problem $$ -Delta_p u=lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),quad uinmathcal{D}^{1,p}(mathbb{R}^N), $$ where, 2 les than p less than N$, $lambda_1$ is the first eigenvalue of the $p$-Laplacian on $mathcal{D}^{1,p}(mathbb{R}^N)$ relative to the radially symmetric weight $h(x)=h(|x|)$. In this problem, $g(s)$ is a bounded function for all $sinmathbb{R}$, $ain L^{(p^{*})'}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $fin L^{(p^{*})'}(mathbb{R}^N)$. To establish an existence result, we employ the Saddle Point Theorem of Rabinowitz [9] and an improved Poincare inequality from an article of Alziary, Fleckinger and Takac [2].
topic Resonance
p-Laplacian
improved Poincare inequality.
url http://ejde.math.txstate.edu/Volumes/2005/112/abstr.html
work_keys_str_mv AT gustavoizquierdob aresonanceproblemfortheplaplacianinrn
AT gabriellopezg aresonanceproblemfortheplaplacianinrn
AT gustavoizquierdob resonanceproblemfortheplaplacianinrn
AT gabriellopezg resonanceproblemfortheplaplacianinrn
_version_ 1725291511194583040