INDUSTRIAL CRYSTALLIZATION AND PRECIPITATION FROM SOLUTIONS: STATE OF THE TECHNIQUE

Crystallization and precipitation from solutions are responsible for 70% of all solid materials produced by the chemical industry. Competing with distillation as a separation and purification technique, their use is widespread. They operate at low temperatures with low energy consumption and yield w...

Full description

Bibliographic Details
Main Authors: M. Giulietti, M.M. Seckler, S. Derenzo, M.I. Ré, E. Cekinski
Format: Article
Language:English
Published: Brazilian Society of Chemical Engineering 2001-12-01
Series:Brazilian Journal of Chemical Engineering
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000400007
Description
Summary:Crystallization and precipitation from solutions are responsible for 70% of all solid materials produced by the chemical industry. Competing with distillation as a separation and purification technique, their use is widespread. They operate at low temperatures with low energy consumption and yield with high purifications in one single step. Operational conditions largely determine product quality in terms of purity, filterability, flowability and reactivity. Producing a material with the desired quality often requires a sound knowledge of the elementary steps involved in the process: creation of supersaturation, nucleation, crystal growth, aggregation and other secondary processes. Mathematical models coupling these elementary processes to all particles in a crystallizer have been developed to design and optimize crystallizer operation. For precipitation, the spatial distribution of reactants and particles in the reactor is important; thus the tools of computational fluid dynamics are becoming increasingly important. For crystallization of organic chemicals, where incorporation of impurities and crystal shape are critical, molecular modeling has recently appeared as a useful tool. These theoretical developments must be coupled to experimental data specific to each material. Theories and experimental techniques of industrial crystallization and precipitation from solutions are reviewed, and recent developments are highlighted.
ISSN:0104-6632
1678-4383