Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
<p>Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and i...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-09-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/5913/2021/amt-14-5913-2021.pdf |
id |
doaj-bb5f320a38ee4b7dbce04e432d2cdb7c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. P. Lee M. Surdu D. M. Bell H. Lamkaddam M. Wang M. Wang F. Ataei V. Hofbauer V. Hofbauer B. Lopez B. Lopez N. M. Donahue N. M. Donahue N. M. Donahue N. M. Donahue J. Dommen A. S. H. Prevot J. G. Slowik D. Wang U. Baltensperger I. El Haddad |
spellingShingle |
C. P. Lee M. Surdu D. M. Bell H. Lamkaddam M. Wang M. Wang F. Ataei V. Hofbauer V. Hofbauer B. Lopez B. Lopez N. M. Donahue N. M. Donahue N. M. Donahue N. M. Donahue J. Dommen A. S. H. Prevot J. G. Slowik D. Wang U. Baltensperger I. El Haddad Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization Atmospheric Measurement Techniques |
author_facet |
C. P. Lee M. Surdu D. M. Bell H. Lamkaddam M. Wang M. Wang F. Ataei V. Hofbauer V. Hofbauer B. Lopez B. Lopez N. M. Donahue N. M. Donahue N. M. Donahue N. M. Donahue J. Dommen A. S. H. Prevot J. G. Slowik D. Wang U. Baltensperger I. El Haddad |
author_sort |
C. P. Lee |
title |
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization |
title_short |
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization |
title_full |
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization |
title_fullStr |
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization |
title_full_unstemmed |
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization |
title_sort |
effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2021-09-01 |
description |
<p>Extractive electrospray ionization (EESI) has been a well-known
technique for high-throughput online molecular characterization of chemical
reaction products and intermediates, detection of native biomolecules, in
vivo metabolomics, and environmental monitoring with negligible thermal and
ionization-induced fragmentation for over two decades. However, the EESI
extraction mechanism remains uncertain. Prior studies disagree on whether
particles between 20 and 400 nm diameter are fully extracted or if the
extraction is limited to the surface layer. Here, we examined the analyte
extraction mechanism by assessing the influence of particle size and coating
thickness on the detection of the molecules therein. We find that particles
are extracted fully: organics-coated NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> particles with a
fixed core volume (156 and 226 nm in diameter without coating) showed
constant EESI signals for NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> independent of the shell coating
thickness, while the signals of the secondary organic molecules comprising
the shell varied proportionally to the shell volume. We also found that the
EESI sensitivity exhibited a strong size dependence, with an increase in
sensitivity by 1–3 orders of magnitude as particle size decreased
from 300 to 30 nm. This dependence varied with the electrospray (ES)
droplet size, the particle size and the residence time for coagulation in the
EESI inlet, suggesting that the EESI sensitivity was influenced by the
coagulation coefficient between particles and ES droplets. Overall, our
results indicate that, in the EESI, particles are fully extracted by the ES
droplets regardless of the chemical composition, when they are collected by
the ES droplets. However, their coalescence is not complete and depends
strongly on their size. This size dependence is especially relevant when
EESI is used to probe size-varying particles as is the case in aerosol
formation and growth studies with size ranges below 100 nm.</p> |
url |
https://amt.copernicus.org/articles/14/5913/2021/amt-14-5913-2021.pdf |
work_keys_str_mv |
AT cplee effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT msurdu effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT dmbell effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT hlamkaddam effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT mwang effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT mwang effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT fataei effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT vhofbauer effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT vhofbauer effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT blopez effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT blopez effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT jdommen effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT ashprevot effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT jgslowik effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT dwang effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT ubaltensperger effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization AT ielhaddad effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization |
_version_ |
1721178890821435392 |
spelling |
doaj-bb5f320a38ee4b7dbce04e432d2cdb7c2021-09-02T06:37:49ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-09-01145913592310.5194/amt-14-5913-2021Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionizationC. P. Lee0M. Surdu1D. M. Bell2H. Lamkaddam3M. Wang4M. Wang5F. Ataei6V. Hofbauer7V. Hofbauer8B. Lopez9B. Lopez10N. M. Donahue11N. M. Donahue12N. M. Donahue13N. M. Donahue14J. Dommen15A. S. H. Prevot16J. G. Slowik17D. Wang18U. Baltensperger19I. El Haddad20Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, 04318 Leipzig, GermanyCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USACenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USACenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland<p>Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and ionization-induced fragmentation for over two decades. However, the EESI extraction mechanism remains uncertain. Prior studies disagree on whether particles between 20 and 400 nm diameter are fully extracted or if the extraction is limited to the surface layer. Here, we examined the analyte extraction mechanism by assessing the influence of particle size and coating thickness on the detection of the molecules therein. We find that particles are extracted fully: organics-coated NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> particles with a fixed core volume (156 and 226 nm in diameter without coating) showed constant EESI signals for NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> independent of the shell coating thickness, while the signals of the secondary organic molecules comprising the shell varied proportionally to the shell volume. We also found that the EESI sensitivity exhibited a strong size dependence, with an increase in sensitivity by 1–3 orders of magnitude as particle size decreased from 300 to 30 nm. This dependence varied with the electrospray (ES) droplet size, the particle size and the residence time for coagulation in the EESI inlet, suggesting that the EESI sensitivity was influenced by the coagulation coefficient between particles and ES droplets. Overall, our results indicate that, in the EESI, particles are fully extracted by the ES droplets regardless of the chemical composition, when they are collected by the ES droplets. However, their coalescence is not complete and depends strongly on their size. This size dependence is especially relevant when EESI is used to probe size-varying particles as is the case in aerosol formation and growth studies with size ranges below 100 nm.</p>https://amt.copernicus.org/articles/14/5913/2021/amt-14-5913-2021.pdf |