Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization

<p>Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and i...

Full description

Bibliographic Details
Main Authors: C. P. Lee, M. Surdu, D. M. Bell, H. Lamkaddam, M. Wang, F. Ataei, V. Hofbauer, B. Lopez, N. M. Donahue, J. Dommen, A. S. H. Prevot, J. G. Slowik, D. Wang, U. Baltensperger, I. El Haddad
Format: Article
Language:English
Published: Copernicus Publications 2021-09-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/5913/2021/amt-14-5913-2021.pdf
id doaj-bb5f320a38ee4b7dbce04e432d2cdb7c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. P. Lee
M. Surdu
D. M. Bell
H. Lamkaddam
M. Wang
M. Wang
F. Ataei
V. Hofbauer
V. Hofbauer
B. Lopez
B. Lopez
N. M. Donahue
N. M. Donahue
N. M. Donahue
N. M. Donahue
J. Dommen
A. S. H. Prevot
J. G. Slowik
D. Wang
U. Baltensperger
I. El Haddad
spellingShingle C. P. Lee
M. Surdu
D. M. Bell
H. Lamkaddam
M. Wang
M. Wang
F. Ataei
V. Hofbauer
V. Hofbauer
B. Lopez
B. Lopez
N. M. Donahue
N. M. Donahue
N. M. Donahue
N. M. Donahue
J. Dommen
A. S. H. Prevot
J. G. Slowik
D. Wang
U. Baltensperger
I. El Haddad
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
Atmospheric Measurement Techniques
author_facet C. P. Lee
M. Surdu
D. M. Bell
H. Lamkaddam
M. Wang
M. Wang
F. Ataei
V. Hofbauer
V. Hofbauer
B. Lopez
B. Lopez
N. M. Donahue
N. M. Donahue
N. M. Donahue
N. M. Donahue
J. Dommen
A. S. H. Prevot
J. G. Slowik
D. Wang
U. Baltensperger
I. El Haddad
author_sort C. P. Lee
title Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
title_short Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
title_full Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
title_fullStr Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
title_full_unstemmed Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
title_sort effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-09-01
description <p>Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and ionization-induced fragmentation for over two decades. However, the EESI extraction mechanism remains uncertain. Prior studies disagree on whether particles between 20 and 400 nm diameter are fully extracted or if the extraction is limited to the surface layer. Here, we examined the analyte extraction mechanism by assessing the influence of particle size and coating thickness on the detection of the molecules therein. We find that particles are extracted fully: organics-coated NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> particles with a fixed core volume (156 and 226 nm in diameter without coating) showed constant EESI signals for NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> independent of the shell coating thickness, while the signals of the secondary organic molecules comprising the shell varied proportionally to the shell volume. We also found that the EESI sensitivity exhibited a strong size dependence, with an increase in sensitivity by 1–3 orders of magnitude as particle size decreased from 300 to 30 nm. This dependence varied with the electrospray (ES) droplet size, the particle size and the residence time for coagulation in the EESI inlet, suggesting that the EESI sensitivity was influenced by the coagulation coefficient between particles and ES droplets. Overall, our results indicate that, in the EESI, particles are fully extracted by the ES droplets regardless of the chemical composition, when they are collected by the ES droplets. However, their coalescence is not complete and depends strongly on their size. This size dependence is especially relevant when EESI is used to probe size-varying particles as is the case in aerosol formation and growth studies with size ranges below 100 nm.</p>
url https://amt.copernicus.org/articles/14/5913/2021/amt-14-5913-2021.pdf
work_keys_str_mv AT cplee effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT msurdu effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT dmbell effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT hlamkaddam effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT mwang effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT mwang effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT fataei effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT vhofbauer effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT vhofbauer effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT blopez effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT blopez effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT nmdonahue effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT jdommen effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT ashprevot effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT jgslowik effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT dwang effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT ubaltensperger effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
AT ielhaddad effectsofaerosolsizeandcoatingthicknessonthemoleculardetectionusingextractiveelectrosprayionization
_version_ 1721178890821435392
spelling doaj-bb5f320a38ee4b7dbce04e432d2cdb7c2021-09-02T06:37:49ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-09-01145913592310.5194/amt-14-5913-2021Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionizationC. P. Lee0M. Surdu1D. M. Bell2H. Lamkaddam3M. Wang4M. Wang5F. Ataei6V. Hofbauer7V. Hofbauer8B. Lopez9B. Lopez10N. M. Donahue11N. M. Donahue12N. M. Donahue13N. M. Donahue14J. Dommen15A. S. H. Prevot16J. G. Slowik17D. Wang18U. Baltensperger19I. El Haddad20Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, 04318 Leipzig, GermanyCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USACenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USACenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USADepartment of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USALaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland<p>Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and ionization-induced fragmentation for over two decades. However, the EESI extraction mechanism remains uncertain. Prior studies disagree on whether particles between 20 and 400 nm diameter are fully extracted or if the extraction is limited to the surface layer. Here, we examined the analyte extraction mechanism by assessing the influence of particle size and coating thickness on the detection of the molecules therein. We find that particles are extracted fully: organics-coated NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> particles with a fixed core volume (156 and 226 nm in diameter without coating) showed constant EESI signals for NH<span class="inline-formula"><sub>4</sub></span>NO<span class="inline-formula"><sub>3</sub></span> independent of the shell coating thickness, while the signals of the secondary organic molecules comprising the shell varied proportionally to the shell volume. We also found that the EESI sensitivity exhibited a strong size dependence, with an increase in sensitivity by 1–3 orders of magnitude as particle size decreased from 300 to 30 nm. This dependence varied with the electrospray (ES) droplet size, the particle size and the residence time for coagulation in the EESI inlet, suggesting that the EESI sensitivity was influenced by the coagulation coefficient between particles and ES droplets. Overall, our results indicate that, in the EESI, particles are fully extracted by the ES droplets regardless of the chemical composition, when they are collected by the ES droplets. However, their coalescence is not complete and depends strongly on their size. This size dependence is especially relevant when EESI is used to probe size-varying particles as is the case in aerosol formation and growth studies with size ranges below 100 nm.</p>https://amt.copernicus.org/articles/14/5913/2021/amt-14-5913-2021.pdf