Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.

Amyloid fibrils are associated with many maladies, including Alzheimer's disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their pur...

Full description

Bibliographic Details
Main Authors: Erin R Greiner, Jeffery W Kelly, Fernando L Palhano
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25144803/?tool=EBI
id doaj-bb53c044be03432aa4bd8b7c196be5ef
record_format Article
spelling doaj-bb53c044be03432aa4bd8b7c196be5ef2021-03-04T11:48:08ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0198e10543310.1371/journal.pone.0105433Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.Erin R GreinerJeffery W KellyFernando L PalhanoAmyloid fibrils are associated with many maladies, including Alzheimer's disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ(1-40) amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ(1-40) amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ(1-40) amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this protocol to the isolation of amyloids.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25144803/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Erin R Greiner
Jeffery W Kelly
Fernando L Palhano
spellingShingle Erin R Greiner
Jeffery W Kelly
Fernando L Palhano
Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
PLoS ONE
author_facet Erin R Greiner
Jeffery W Kelly
Fernando L Palhano
author_sort Erin R Greiner
title Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
title_short Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
title_full Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
title_fullStr Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
title_full_unstemmed Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
title_sort immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description Amyloid fibrils are associated with many maladies, including Alzheimer's disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ(1-40) amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ(1-40) amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ(1-40) amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this protocol to the isolation of amyloids.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25144803/?tool=EBI
work_keys_str_mv AT erinrgreiner immunoprecipitationofamyloidfibrilsbytheuseofanantibodythatrecognizesagenericepitopecommontoamyloidfibrils
AT jefferywkelly immunoprecipitationofamyloidfibrilsbytheuseofanantibodythatrecognizesagenericepitopecommontoamyloidfibrils
AT fernandolpalhano immunoprecipitationofamyloidfibrilsbytheuseofanantibodythatrecognizesagenericepitopecommontoamyloidfibrils
_version_ 1714803484604235776