Principal Component Analysis from Mass Spectrometry Data Combined to a Sensory Evaluation as a Suitable Method for Assessing Bitterness of Enzymatic Hydrolysates Produced from Micellar Casein Proteins

Enzymatic hydrolysis of food proteins generally changes the techno-functional, nutritional, and organoleptic properties of hydrolyzed proteins. As a result, protein hydrolysates have an important interest in the food industries. However, they tend to be characterized by a bitter taste and some off-f...

Full description

Bibliographic Details
Main Authors: Dahlia Daher, Barbara Deracinois, Alain Baniel, Elodie Wattez, Justine Dantin, Renato Froidevaux, Sylvie Chollet, Christophe Flahaut
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/9/10/1354
Description
Summary:Enzymatic hydrolysis of food proteins generally changes the techno-functional, nutritional, and organoleptic properties of hydrolyzed proteins. As a result, protein hydrolysates have an important interest in the food industries. However, they tend to be characterized by a bitter taste and some off-flavors, which limit their use in the food industry. These tastes and aromas come from peptides, amino acids, and volatile compounds generated during hydrolysis. In this article, sixteen more or less bitter enzymatic hydrolysates produced from a milk protein liquid fraction enriched in micellar caseins using commercially available, food-grade proteases were subjected to a sensory analysis using a trained and validated sensory panel combined to a peptidomics approach based on the peptide characterization by reverse-phase high-performance liquid chromatography, high-resolution mass spectrometry, and bioinformatics software. The comparison between the sensory characteristics and the principal components of the principal component analysis (PCA) of mass spectrometry data reveals that peptidomics constitutes a convenient, valuable, fast, and economic intermediate method to evaluating the bitterness of enzymatic hydrolysates, as a trained sensory panel can do it.
ISSN:2304-8158