Fuzzy Covering-Based Three-Way Clustering

This paper investigates the three-way clustering involving fuzzy covering, thresholds acquisition, and boundary region processing. First of all, a valid fuzzy covering of the universe is constructed on the basis of an appropriate fuzzy similarity relation, which helps capture the structural informat...

Full description

Bibliographic Details
Main Author: Dandan Yang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/2901210
Description
Summary:This paper investigates the three-way clustering involving fuzzy covering, thresholds acquisition, and boundary region processing. First of all, a valid fuzzy covering of the universe is constructed on the basis of an appropriate fuzzy similarity relation, which helps capture the structural information and the internal connections of the dataset from the global perspective. Due to the advantages of valid fuzzy covering, we explore the valid fuzzy covering instead of the raw dataset for RFCM algorithm-based three-way clustering. Subsequently, from the perspective of semantic interpretation of balancing the uncertainty changes in fuzzy sets, a method of partition thresholds acquisition combining linear and nonlinear fuzzy entropy theory is proposed. Furthermore, boundary regions in three-way clustering correspond to the abstaining decisions and generate uncertain rules. In order to improve the classification accuracy, the k-nearest neighbor (kNN) algorithm is utilized to reduce the objects in the boundary regions. The experimental results show that the performance of the proposed three-way clustering based on fuzzy covering and kNN-FRFCM algorithm is better than the compared algorithms in most cases.
ISSN:1024-123X
1563-5147