On the intersection of weighted Hardy spaces

Let $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\inf...

Full description

Bibliographic Details
Main Authors: V.M. Dilnyi, T.I. Hishchak
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2016-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1428
id doaj-bb214277234a42e693a9450c62c95aa6
record_format Article
spelling doaj-bb214277234a42e693a9450c62c95aa62020-11-25T03:14:55ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102016-12-018222422910.15330/cmp.8.2.224-2291428On the intersection of weighted Hardy spacesV.M. Dilnyi0T.I. Hishchak1Ivan Franko State Pedagogical University, 24 Franka str., 82100, Drohobych, UkraineIvan Franko State Pedagogical University, 24 Franka str., 82100, Drohobych, UkraineLet $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\infty} |f(re^{i\varphi})|^pe^{-p\sigma r|\sin \varphi|}dr\right\}^{1/p}<+\infty.$$ We obtain some properties and description of zeros for functions from the space $\bigcap\limits_{\sigma>0} H^{p}_{\sigma}(\mathbb C_{+}).$https://journals.pnu.edu.ua/index.php/cmp/article/view/1428zeros of functionsweighted hardy spaceangular boundary values
collection DOAJ
language English
format Article
sources DOAJ
author V.M. Dilnyi
T.I. Hishchak
spellingShingle V.M. Dilnyi
T.I. Hishchak
On the intersection of weighted Hardy spaces
Karpatsʹkì Matematičnì Publìkacìï
zeros of functions
weighted hardy space
angular boundary values
author_facet V.M. Dilnyi
T.I. Hishchak
author_sort V.M. Dilnyi
title On the intersection of weighted Hardy spaces
title_short On the intersection of weighted Hardy spaces
title_full On the intersection of weighted Hardy spaces
title_fullStr On the intersection of weighted Hardy spaces
title_full_unstemmed On the intersection of weighted Hardy spaces
title_sort on the intersection of weighted hardy spaces
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2016-12-01
description Let $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\infty} |f(re^{i\varphi})|^pe^{-p\sigma r|\sin \varphi|}dr\right\}^{1/p}<+\infty.$$ We obtain some properties and description of zeros for functions from the space $\bigcap\limits_{\sigma>0} H^{p}_{\sigma}(\mathbb C_{+}).$
topic zeros of functions
weighted hardy space
angular boundary values
url https://journals.pnu.edu.ua/index.php/cmp/article/view/1428
work_keys_str_mv AT vmdilnyi ontheintersectionofweightedhardyspaces
AT tihishchak ontheintersectionofweightedhardyspaces
_version_ 1724641601150517248