On the intersection of weighted Hardy spaces
Let $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\inf...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2016-12-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1428 |
id |
doaj-bb214277234a42e693a9450c62c95aa6 |
---|---|
record_format |
Article |
spelling |
doaj-bb214277234a42e693a9450c62c95aa62020-11-25T03:14:55ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102016-12-018222422910.15330/cmp.8.2.224-2291428On the intersection of weighted Hardy spacesV.M. Dilnyi0T.I. Hishchak1Ivan Franko State Pedagogical University, 24 Franka str., 82100, Drohobych, UkraineIvan Franko State Pedagogical University, 24 Franka str., 82100, Drohobych, UkraineLet $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\infty} |f(re^{i\varphi})|^pe^{-p\sigma r|\sin \varphi|}dr\right\}^{1/p}<+\infty.$$ We obtain some properties and description of zeros for functions from the space $\bigcap\limits_{\sigma>0} H^{p}_{\sigma}(\mathbb C_{+}).$https://journals.pnu.edu.ua/index.php/cmp/article/view/1428zeros of functionsweighted hardy spaceangular boundary values |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
V.M. Dilnyi T.I. Hishchak |
spellingShingle |
V.M. Dilnyi T.I. Hishchak On the intersection of weighted Hardy spaces Karpatsʹkì Matematičnì Publìkacìï zeros of functions weighted hardy space angular boundary values |
author_facet |
V.M. Dilnyi T.I. Hishchak |
author_sort |
V.M. Dilnyi |
title |
On the intersection of weighted Hardy spaces |
title_short |
On the intersection of weighted Hardy spaces |
title_full |
On the intersection of weighted Hardy spaces |
title_fullStr |
On the intersection of weighted Hardy spaces |
title_full_unstemmed |
On the intersection of weighted Hardy spaces |
title_sort |
on the intersection of weighted hardy spaces |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 2313-0210 |
publishDate |
2016-12-01 |
description |
Let $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\infty} |f(re^{i\varphi})|^pe^{-p\sigma r|\sin \varphi|}dr\right\}^{1/p}<+\infty.$$ We obtain some properties and description of zeros for functions from the space $\bigcap\limits_{\sigma>0} H^{p}_{\sigma}(\mathbb C_{+}).$ |
topic |
zeros of functions weighted hardy space angular boundary values |
url |
https://journals.pnu.edu.ua/index.php/cmp/article/view/1428 |
work_keys_str_mv |
AT vmdilnyi ontheintersectionofweightedhardyspaces AT tihishchak ontheintersectionofweightedhardyspaces |
_version_ |
1724641601150517248 |