On the intersection of weighted Hardy spaces

Let $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\inf...

Full description

Bibliographic Details
Main Authors: V.M. Dilnyi, T.I. Hishchak
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2016-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1428
Description
Summary:Let $H^p_\sigma( \mathbb{C}_+),$ $1\leq p <+\infty,$ $0\leq \sigma < +\infty,$ be the space of all functions $f$ analytic in the half plane $ \mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$\|f\|:=\sup\limits_{\varphi\in (-\frac{\pi}{2};\frac{\pi}{2})}\left\{\int\limits_0^{+\infty} |f(re^{i\varphi})|^pe^{-p\sigma r|\sin \varphi|}dr\right\}^{1/p}<+\infty.$$ We obtain some properties and description of zeros for functions from the space $\bigcap\limits_{\sigma>0} H^{p}_{\sigma}(\mathbb C_{+}).$
ISSN:2075-9827
2313-0210