Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation

<p>Abstract</p> <p>Background</p> <p>The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is...

Full description

Bibliographic Details
Main Authors: Ringe Jochen, Fromigué Olivia, Hamidouche Zahia, Häupl Thomas, Marie Pierre J
Format: Article
Language:English
Published: BMC 2010-06-01
Series:BMC Cell Biology
Online Access:http://www.biomedcentral.com/1471-2121/11/44
id doaj-bafbe7e40e6e407a942d379215017bbd
record_format Article
spelling doaj-bafbe7e40e6e407a942d379215017bbd2020-11-25T00:23:26ZengBMCBMC Cell Biology1471-21212010-06-011114410.1186/1471-2121-11-44Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiationRinge JochenFromigué OliviaHamidouche ZahiaHäupl ThomasMarie Pierre J<p>Abstract</p> <p>Background</p> <p>The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs.</p> <p>Results</p> <p>Microarray analysis and validation experiments showed that the expression of IGF2 and IGFBP2 was increased together with integrin alpha5 (ITGA5) during dexamethasone-induced osteoblast differentiation in human MSCs. This effect was functional since we found that IGF2 and IGFBP2 enhanced the expression of osteoblast phenotypic markers and <it>in vitro </it>osteogenic capacity of hMSCs. Interestingly, we showed that downregulation of endogenous ITGA5 using specific shRNA decreased IGF2 and IGFBP2 expression in hMSCs. Conversely, ITGA5 overexpression upregulated IGF2 and IGFBP2 expression in hMSCs, which indicates tight crosstalks between these molecules. Consistent with this concept, activation of endogenous ITGA5 using a specific antibody that primes the integrin, or a peptide that specifically activates ITGA5 increased IGF2 and IGFBP2 expression in hMSCs. Finally, we showed that pharmacological inhibition of FAK/ERK1/2-MAPKs or PI3K signalling pathways that are enhanced by ITGA5 activation, blunted IGF2 and IGFBP2 expression in hMSCs.</p> <p>Conclusion</p> <p>The results show that ITGA5 is a key mediator of IGF2 and IGFBP2 expression that promotes osteoblast differentiation in human MSCs, and reveal that crosstalks between ITGA5 and IGF2/IGFBP2 signalling are important mechanisms that trigger osteogenic differentiation in human bone marrow derived mesenchymal stromal cells.</p> http://www.biomedcentral.com/1471-2121/11/44
collection DOAJ
language English
format Article
sources DOAJ
author Ringe Jochen
Fromigué Olivia
Hamidouche Zahia
Häupl Thomas
Marie Pierre J
spellingShingle Ringe Jochen
Fromigué Olivia
Hamidouche Zahia
Häupl Thomas
Marie Pierre J
Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
BMC Cell Biology
author_facet Ringe Jochen
Fromigué Olivia
Hamidouche Zahia
Häupl Thomas
Marie Pierre J
author_sort Ringe Jochen
title Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
title_short Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
title_full Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
title_fullStr Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
title_full_unstemmed Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
title_sort crosstalks between integrin alpha 5 and igf2/igfbp2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation
publisher BMC
series BMC Cell Biology
issn 1471-2121
publishDate 2010-06-01
description <p>Abstract</p> <p>Background</p> <p>The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs.</p> <p>Results</p> <p>Microarray analysis and validation experiments showed that the expression of IGF2 and IGFBP2 was increased together with integrin alpha5 (ITGA5) during dexamethasone-induced osteoblast differentiation in human MSCs. This effect was functional since we found that IGF2 and IGFBP2 enhanced the expression of osteoblast phenotypic markers and <it>in vitro </it>osteogenic capacity of hMSCs. Interestingly, we showed that downregulation of endogenous ITGA5 using specific shRNA decreased IGF2 and IGFBP2 expression in hMSCs. Conversely, ITGA5 overexpression upregulated IGF2 and IGFBP2 expression in hMSCs, which indicates tight crosstalks between these molecules. Consistent with this concept, activation of endogenous ITGA5 using a specific antibody that primes the integrin, or a peptide that specifically activates ITGA5 increased IGF2 and IGFBP2 expression in hMSCs. Finally, we showed that pharmacological inhibition of FAK/ERK1/2-MAPKs or PI3K signalling pathways that are enhanced by ITGA5 activation, blunted IGF2 and IGFBP2 expression in hMSCs.</p> <p>Conclusion</p> <p>The results show that ITGA5 is a key mediator of IGF2 and IGFBP2 expression that promotes osteoblast differentiation in human MSCs, and reveal that crosstalks between ITGA5 and IGF2/IGFBP2 signalling are important mechanisms that trigger osteogenic differentiation in human bone marrow derived mesenchymal stromal cells.</p>
url http://www.biomedcentral.com/1471-2121/11/44
work_keys_str_mv AT ringejochen crosstalksbetweenintegrinalpha5andigf2igfbp2signallingtriggerhumanbonemarrowderivedmesenchymalstromalosteogenicdifferentiation
AT fromigueolivia crosstalksbetweenintegrinalpha5andigf2igfbp2signallingtriggerhumanbonemarrowderivedmesenchymalstromalosteogenicdifferentiation
AT hamidouchezahia crosstalksbetweenintegrinalpha5andigf2igfbp2signallingtriggerhumanbonemarrowderivedmesenchymalstromalosteogenicdifferentiation
AT hauplthomas crosstalksbetweenintegrinalpha5andigf2igfbp2signallingtriggerhumanbonemarrowderivedmesenchymalstromalosteogenicdifferentiation
AT mariepierrej crosstalksbetweenintegrinalpha5andigf2igfbp2signallingtriggerhumanbonemarrowderivedmesenchymalstromalosteogenicdifferentiation
_version_ 1725357038435827712