Segmentation-based image defogging using modified dark channel prior
Abstract Image acquisition under bad weather conditions is prone to yield image with low contrast, faded color, and overall poor visibility. Different computer vision applications including surveillance, object classification, tracking, and recognition get effected due to degraded hazy images. Dehaz...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-02-01
|
Series: | EURASIP Journal on Image and Video Processing |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13640-020-0493-9 |
id |
doaj-baed98b372c24b3a8fc059b380a2a304 |
---|---|
record_format |
Article |
spelling |
doaj-baed98b372c24b3a8fc059b380a2a3042020-11-25T02:22:43ZengSpringerOpenEURASIP Journal on Image and Video Processing1687-52812020-02-012020111410.1186/s13640-020-0493-9Segmentation-based image defogging using modified dark channel priorAneela Sabir0Khawar Khurshid1Ahmad Salman2National University of Sciences and TechnologyNational University of Sciences and TechnologyNational University of Sciences and TechnologyAbstract Image acquisition under bad weather conditions is prone to yield image with low contrast, faded color, and overall poor visibility. Different computer vision applications including surveillance, object classification, tracking, and recognition get effected due to degraded hazy images. Dehazing can significantly improve contrast, balance luminance, correct distortion, remove unwanted visual effects/ and therefore enhance the image quality. As a result, image defogging is imperative pre-processing step in computer vision applications. Previously, dark channel prior-based algorithms have proven promising results over the available techniques. In this paper, we have proposed a modified dark channel prior that uses fog density and guided image-filtering technique to estimate and refine transmission map, respectively. Guided image filter speeds up the refinement of transmission map, hence reduces the overall computational complexity of algorithm. We have also incorporated segmentation of the foggy image into sky and non-sky regions, after which, the modified dark channel prior and atmospheric light is computed for each segment. Then, the average value of atmospheric light for each segment is used to estimate transmission map. We have performed quantitative and subjective comparison for effective evaluation of our proposed algorithm against the current state-of-the-art algorithms on natural and synthetic images. Different quality metrics, such as saturation, mean square error, fog density, peak signal to noise ratio, structural similarity index metric, dehazing algorithm index (DHQI), full-reference image quality assessmen (FR-IQA), and naturalness of dehazed images have shown the proposed algorithm to be better than existing techniques.http://link.springer.com/article/10.1186/s13640-020-0493-9DefoggingDark channelGuided image filterSegmentationImage enhancement |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aneela Sabir Khawar Khurshid Ahmad Salman |
spellingShingle |
Aneela Sabir Khawar Khurshid Ahmad Salman Segmentation-based image defogging using modified dark channel prior EURASIP Journal on Image and Video Processing Defogging Dark channel Guided image filter Segmentation Image enhancement |
author_facet |
Aneela Sabir Khawar Khurshid Ahmad Salman |
author_sort |
Aneela Sabir |
title |
Segmentation-based image defogging using modified dark channel prior |
title_short |
Segmentation-based image defogging using modified dark channel prior |
title_full |
Segmentation-based image defogging using modified dark channel prior |
title_fullStr |
Segmentation-based image defogging using modified dark channel prior |
title_full_unstemmed |
Segmentation-based image defogging using modified dark channel prior |
title_sort |
segmentation-based image defogging using modified dark channel prior |
publisher |
SpringerOpen |
series |
EURASIP Journal on Image and Video Processing |
issn |
1687-5281 |
publishDate |
2020-02-01 |
description |
Abstract Image acquisition under bad weather conditions is prone to yield image with low contrast, faded color, and overall poor visibility. Different computer vision applications including surveillance, object classification, tracking, and recognition get effected due to degraded hazy images. Dehazing can significantly improve contrast, balance luminance, correct distortion, remove unwanted visual effects/ and therefore enhance the image quality. As a result, image defogging is imperative pre-processing step in computer vision applications. Previously, dark channel prior-based algorithms have proven promising results over the available techniques. In this paper, we have proposed a modified dark channel prior that uses fog density and guided image-filtering technique to estimate and refine transmission map, respectively. Guided image filter speeds up the refinement of transmission map, hence reduces the overall computational complexity of algorithm. We have also incorporated segmentation of the foggy image into sky and non-sky regions, after which, the modified dark channel prior and atmospheric light is computed for each segment. Then, the average value of atmospheric light for each segment is used to estimate transmission map. We have performed quantitative and subjective comparison for effective evaluation of our proposed algorithm against the current state-of-the-art algorithms on natural and synthetic images. Different quality metrics, such as saturation, mean square error, fog density, peak signal to noise ratio, structural similarity index metric, dehazing algorithm index (DHQI), full-reference image quality assessmen (FR-IQA), and naturalness of dehazed images have shown the proposed algorithm to be better than existing techniques. |
topic |
Defogging Dark channel Guided image filter Segmentation Image enhancement |
url |
http://link.springer.com/article/10.1186/s13640-020-0493-9 |
work_keys_str_mv |
AT aneelasabir segmentationbasedimagedefoggingusingmodifieddarkchannelprior AT khawarkhurshid segmentationbasedimagedefoggingusingmodifieddarkchannelprior AT ahmadsalman segmentationbasedimagedefoggingusingmodifieddarkchannelprior |
_version_ |
1724862161747968000 |