A Distributed AGC Method considering Two-Channel Random Delays and Their Difference between Interconnected Power Systems
With the emergence of the concept of smart grid, the networked automatic generation control (AGC) method has been more and more important for secondary frequency control due to its characteristics such as openness and flexibility. However, the networked AGC system also presents some defects such as...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Journal of Electrical and Computer Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/4261304 |
Summary: | With the emergence of the concept of smart grid, the networked automatic generation control (AGC) method has been more and more important for secondary frequency control due to its characteristics such as openness and flexibility. However, the networked AGC system also presents some defects such as time delays and packet dropouts. The existence of time delays makes the traditional AGC strategies more challenging. A novel AGC method is proposed in this paper to mitigate the negative effects of time delays. Firstly, a multiarea power system model is built under the consideration of two-channel time delays: from controller to actuator and from sensor to controller. More practically, the difference of delays between areas is also exhibited in the model. Thus, from the predictive characteristics of model predictive control (MPC), a method of selection with optimization is presented to obtain the appropriate control variable when delays exist. Furthermore, three cases, (a) no processing for delay, (b) control sequence selection, (c) control sequence selection with optimization, are analyzed. The frequency and area control error (ACE) performance are evaluated with step load perturbation and random load perturbation. The simulation results indicate that the system controlled by the proposed method has desired dynamic performances. Consequently, the feasibility and effectiveness of the proposed method are verified. |
---|---|
ISSN: | 2090-0147 2090-0155 |