Harvested Microalgal Biomass from Different Water Treatment Facilities—Its Characteristics and Potential Use as Renewable Sources of Plant Biostimulation

Surface characteristics, physicochemical properties, functional groups, and bioactive compounds of microalgal biomass (MB) samples harvested from various wastewater treatment facilities (WTFs) were investigated to evaluate the reuse feasibility of MB as a potential renewable source of plant biostimu...

Full description

Bibliographic Details
Main Authors: Chang Hyuk Ahn, Saeromi Lee, Jae Roh Park, Tae-Mun Hwang, Jin Chul Joo
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/10/12/1882
Description
Summary:Surface characteristics, physicochemical properties, functional groups, and bioactive compounds of microalgal biomass (MB) samples harvested from various wastewater treatment facilities (WTFs) were investigated to evaluate the reuse feasibility of MB as a potential renewable source of plant biostimulation. Mixtures of the microalgae cells and fine particles (i.e., silt, clay, suspended solids, extracellular organic matter, humus substances, natural organic matter, etc.) were complexed inside MB samples. MB samples harvested and air-dried under natural conditions investigated in this study can have relatively well-preserved cellular morphology as well as chemical substances such as carbohydrates, proteins, and fatty acids based on SEM-EDS analysis. A broad form of the amorphous cellulose rather than a distinct crystalline was observed from FTIR analysis, indicating that the middle spectrum of glucose and starch hydrolysate exist in MB samples. A wide array of chemicals (i.e., Undecane; Heptadecane; Hexadecanoic acid, methyl ester; and Methyl stearate, phenolics, and fatty acids) extracted from MB samples were involved in signaling plant response to abiotic stress, plant growth and biomass with MB samples were greater than those without MB samples. Thus, mixtures of nutrients, minerals and algal biomass in wet and dried MB samples can be beneficially reused as biostimulants in agricultural area after simple processes such as composting, microbial fermentation, and extraction. Further study is warranted to elucidate the effect of useful ingredients in MB harvested from on-site coagulation/flocculation processes on the soil environment as bio-fertilizers.
ISSN:2073-4395