Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics
Siti Norhawani Harun,1 Syafinaz Amin Nordin,2 Siti Salwa Abd Gani,3,4 Ahmad Fuad Shamsuddin,5,6 Mahiran Basri,7 Hamidon Bin Basri1 1Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Medical Microbiology and Parasitology, Fa...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2018-04-01
|
Series: | International Journal of Nanomedicine |
Subjects: | |
Online Access: | https://www.dovepress.com/development-of-nanoemulsion-for-efficient-brain-parenteral-delivery-of-peer-reviewed-article-IJN |
id |
doaj-baab6717353e4706a4847618e709e628 |
---|---|
record_format |
Article |
spelling |
doaj-baab6717353e4706a4847618e709e6282020-11-25T00:03:39ZengDove Medical PressInternational Journal of Nanomedicine1178-20132018-04-01Volume 132571258438011Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokineticsHarun SNAmin Nordin SAbd Gani SSShamsuddin AFBasri MBin Basri HSiti Norhawani Harun,1 Syafinaz Amin Nordin,2 Siti Salwa Abd Gani,3,4 Ahmad Fuad Shamsuddin,5,6 Mahiran Basri,7 Hamidon Bin Basri1 1Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 3Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia; 4Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia; 5Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 6Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia; 7Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia Background and aim: Drugs that are effective against diseases in the central nervous system and reach the brain via blood must pass through the blood–brain barrier (BBB), a unique interface that protects against potential harmful molecules. This presents a major challenge in neuro-drug delivery. This study attempts to fabricate the cefuroxime-loaded nanoemulsion (CLN) to increase drug penetration into the brain when parenterally administered. Methods: The nanoemulsions were formulated using a high-pressure homogenization technique and were characterized for their physicochemical properties. Results: The characterizations revealed a particle size of 100.32±0.75 nm, polydispersity index of 0.18±0.01, zeta potential of -46.9±1.39 mV, viscosity of 1.24±0.34 cps, and osmolality of 285.33±0.58 mOsm/kg, indicating that the nanoemulsion has compatibility for parenteral application. CLN was physicochemically stable within 6 months of storage at 4°C, and the transmission electron microscopy revealed that the CLN droplets were almost spherical in shape. The in vitro release of CLN profile followed a sustained release pattern. The pharmacokinetic profile of CLN showed a significantly higher Cmax, area under the curve (AUC)0–t, prolonged half-life, and lower total plasma clearance, indicating that the systemic concentration of cefuroxime was higher in CLN-treated rats as compared to cefuroxime-free treated rats. A similar profile was obtained for the biodistribution of cefuroxime in the brain, in which CLN showed a significantly higher Cmax, AUC0–t, prolonged half-life, and lower clearance as compared to free cefuroxime solution. Conclusion: Overall, CLN showed excellent physicochemical properties, fulfilled the requirements for parenteral administration, and presented improved in vivo pharmacokinetic profile, which reflected its practical approach to enhance cefuroxime delivery to the brain. Keywords: parenteral nanoemulsion, cefuroxime, drug delivery, pharmacokinetics, blood–brain barrierhttps://www.dovepress.com/development-of-nanoemulsion-for-efficient-brain-parenteral-delivery-of-peer-reviewed-article-IJNparenteral nanoemulsioncefuroximedrug deliverypharmacokineticsblood brain barrier |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Harun SN Amin Nordin S Abd Gani SS Shamsuddin AF Basri M Bin Basri H |
spellingShingle |
Harun SN Amin Nordin S Abd Gani SS Shamsuddin AF Basri M Bin Basri H Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics International Journal of Nanomedicine parenteral nanoemulsion cefuroxime drug delivery pharmacokinetics blood brain barrier |
author_facet |
Harun SN Amin Nordin S Abd Gani SS Shamsuddin AF Basri M Bin Basri H |
author_sort |
Harun SN |
title |
Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics |
title_short |
Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics |
title_full |
Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics |
title_fullStr |
Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics |
title_full_unstemmed |
Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics |
title_sort |
development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1178-2013 |
publishDate |
2018-04-01 |
description |
Siti Norhawani Harun,1 Syafinaz Amin Nordin,2 Siti Salwa Abd Gani,3,4 Ahmad Fuad Shamsuddin,5,6 Mahiran Basri,7 Hamidon Bin Basri1 1Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 3Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia; 4Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia; 5Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 6Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia; 7Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia Background and aim: Drugs that are effective against diseases in the central nervous system and reach the brain via blood must pass through the blood–brain barrier (BBB), a unique interface that protects against potential harmful molecules. This presents a major challenge in neuro-drug delivery. This study attempts to fabricate the cefuroxime-loaded nanoemulsion (CLN) to increase drug penetration into the brain when parenterally administered. Methods: The nanoemulsions were formulated using a high-pressure homogenization technique and were characterized for their physicochemical properties. Results: The characterizations revealed a particle size of 100.32±0.75 nm, polydispersity index of 0.18±0.01, zeta potential of -46.9±1.39 mV, viscosity of 1.24±0.34 cps, and osmolality of 285.33±0.58 mOsm/kg, indicating that the nanoemulsion has compatibility for parenteral application. CLN was physicochemically stable within 6 months of storage at 4°C, and the transmission electron microscopy revealed that the CLN droplets were almost spherical in shape. The in vitro release of CLN profile followed a sustained release pattern. The pharmacokinetic profile of CLN showed a significantly higher Cmax, area under the curve (AUC)0–t, prolonged half-life, and lower total plasma clearance, indicating that the systemic concentration of cefuroxime was higher in CLN-treated rats as compared to cefuroxime-free treated rats. A similar profile was obtained for the biodistribution of cefuroxime in the brain, in which CLN showed a significantly higher Cmax, AUC0–t, prolonged half-life, and lower clearance as compared to free cefuroxime solution. Conclusion: Overall, CLN showed excellent physicochemical properties, fulfilled the requirements for parenteral administration, and presented improved in vivo pharmacokinetic profile, which reflected its practical approach to enhance cefuroxime delivery to the brain. Keywords: parenteral nanoemulsion, cefuroxime, drug delivery, pharmacokinetics, blood–brain barrier |
topic |
parenteral nanoemulsion cefuroxime drug delivery pharmacokinetics blood brain barrier |
url |
https://www.dovepress.com/development-of-nanoemulsion-for-efficient-brain-parenteral-delivery-of-peer-reviewed-article-IJN |
work_keys_str_mv |
AT harunsn developmentofnanoemulsionforefficientbrainparenteraldeliveryofcefuroximedesignscharacterizationsandpharmacokinetics AT aminnordins developmentofnanoemulsionforefficientbrainparenteraldeliveryofcefuroximedesignscharacterizationsandpharmacokinetics AT abdganiss developmentofnanoemulsionforefficientbrainparenteraldeliveryofcefuroximedesignscharacterizationsandpharmacokinetics AT shamsuddinaf developmentofnanoemulsionforefficientbrainparenteraldeliveryofcefuroximedesignscharacterizationsandpharmacokinetics AT basrim developmentofnanoemulsionforefficientbrainparenteraldeliveryofcefuroximedesignscharacterizationsandpharmacokinetics AT binbasrih developmentofnanoemulsionforefficientbrainparenteraldeliveryofcefuroximedesignscharacterizationsandpharmacokinetics |
_version_ |
1725432698503168000 |