Quick calculation of damage for ion irradiation: implementation in Iradina and comparisons to SRIM
Binary collision approximation (BCA) calculation allows for two types of damage calculation: full cascade and quick calculations. Full cascade mode describes fully the cascades while in quick calculations, only the trajectory of the ion is followed and effective formulas give an estimation of the da...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | EPJ Nuclear Sciences & Technologies |
Online Access: | https://www.epj-n.org/articles/epjn/full_html/2019/01/epjn190004/epjn190004.html |
Summary: | Binary collision approximation (BCA) calculation allows for two types of damage calculation: full cascade and quick calculations. Full cascade mode describes fully the cascades while in quick calculations, only the trajectory of the ion is followed and effective formulas give an estimation of the damage resulting from each collision of the ion. We implement quick calculation of damage in the Iradina code both for elemental and multi-component solids. Good agreement is obtained with SRIM. We show that quick calculations are unphysical in multi-component systems. The choice between full cascade and quick calculations is discussed. We advise to favour full cascade over quick calculation because it is more grounded physically and applicable to all materials. Quick calculations remain a good option for pure solids in the case of actual quantitative comparisons with neutron irradiations simulations in which damage levels are estimated with the NRT (Norgett-Robinson and Torrens) formulas. |
---|---|
ISSN: | 2491-9292 |