Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering

<p>We propose a method for blind multiuser detection (MUD) in synchronous systems over flat and fast Rayleigh fading channels. We adopt an autoregressive-moving-average (ARMA) process to model the temporal correlation of the channels. Based on the ARMA process, we propose a novel time-observat...

Full description

Bibliographic Details
Main Authors: Huang Yufei, Zhang Jianqiu (Michelle), Luna Isabel Tienda, Djuri&#263; Petar M., Padillo Diego Pablo Ruiz
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:EURASIP Journal on Wireless Communications and Networking
Subjects:
Online Access:http://dx.doi.org/10.1155/WCN.2005.130
id doaj-ba6cffdb77124f1da4f1ad55f3f11d09
record_format Article
spelling doaj-ba6cffdb77124f1da4f1ad55f3f11d092020-11-24T23:07:49ZengSpringerOpenEURASIP Journal on Wireless Communications and Networking1687-14721687-14992005-01-0120052130140Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle FilteringHuang YufeiZhang Jianqiu (Michelle)Luna Isabel TiendaDjuri&#263; Petar M.Padillo Diego Pablo Ruiz<p>We propose a method for blind multiuser detection (MUD) in synchronous systems over flat and fast Rayleigh fading channels. We adopt an autoregressive-moving-average (ARMA) process to model the temporal correlation of the channels. Based on the ARMA process, we propose a novel time-observation state-space model (TOSSM) that describes the dynamics of the addressed multiuser system. The TOSSM allows an MUD with natural blending of low-complexity particle filtering (PF) and mixture Kalman filtering (for channel estimation). We further propose to use a more efficient PF algorithm known as the stochastic <math alttext="$M$"><mi>M</mi> </math> -algorithm (SMA), which, although having lower complexity than the generic PF implementation, maintains comparable performance.</p> http://dx.doi.org/10.1155/WCN.2005.130multiuser detectiontime-observation state-space modelfading channel estimationparticle filteringmixture Kalman filter
collection DOAJ
language English
format Article
sources DOAJ
author Huang Yufei
Zhang Jianqiu (Michelle)
Luna Isabel Tienda
Djuri&#263; Petar M.
Padillo Diego Pablo Ruiz
spellingShingle Huang Yufei
Zhang Jianqiu (Michelle)
Luna Isabel Tienda
Djuri&#263; Petar M.
Padillo Diego Pablo Ruiz
Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering
EURASIP Journal on Wireless Communications and Networking
multiuser detection
time-observation state-space model
fading channel estimation
particle filtering
mixture Kalman filter
author_facet Huang Yufei
Zhang Jianqiu (Michelle)
Luna Isabel Tienda
Djuri&#263; Petar M.
Padillo Diego Pablo Ruiz
author_sort Huang Yufei
title Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering
title_short Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering
title_full Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering
title_fullStr Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering
title_full_unstemmed Adaptive Blind Multiuser Detection over Flat Fast Fading Channels Using Particle Filtering
title_sort adaptive blind multiuser detection over flat fast fading channels using particle filtering
publisher SpringerOpen
series EURASIP Journal on Wireless Communications and Networking
issn 1687-1472
1687-1499
publishDate 2005-01-01
description <p>We propose a method for blind multiuser detection (MUD) in synchronous systems over flat and fast Rayleigh fading channels. We adopt an autoregressive-moving-average (ARMA) process to model the temporal correlation of the channels. Based on the ARMA process, we propose a novel time-observation state-space model (TOSSM) that describes the dynamics of the addressed multiuser system. The TOSSM allows an MUD with natural blending of low-complexity particle filtering (PF) and mixture Kalman filtering (for channel estimation). We further propose to use a more efficient PF algorithm known as the stochastic <math alttext="$M$"><mi>M</mi> </math> -algorithm (SMA), which, although having lower complexity than the generic PF implementation, maintains comparable performance.</p>
topic multiuser detection
time-observation state-space model
fading channel estimation
particle filtering
mixture Kalman filter
url http://dx.doi.org/10.1155/WCN.2005.130
work_keys_str_mv AT huangyufei adaptiveblindmultiuserdetectionoverflatfastfadingchannelsusingparticlefiltering
AT zhangjianqiumichelle adaptiveblindmultiuserdetectionoverflatfastfadingchannelsusingparticlefiltering
AT lunaisabeltienda adaptiveblindmultiuserdetectionoverflatfastfadingchannelsusingparticlefiltering
AT djuri263petarm adaptiveblindmultiuserdetectionoverflatfastfadingchannelsusingparticlefiltering
AT padillodiegopabloruiz adaptiveblindmultiuserdetectionoverflatfastfadingchannelsusingparticlefiltering
_version_ 1725616867180019712