Controllability, Reachability, and Stabilizability of Finite Automata: A Controllability Matrix Method
This paper investigates the controllability, reachability, and stabilizability of finite automata by using the semitensor product of matrices. Firstly, by expressing the states, inputs, and outputs as vector forms, an algebraic form is obtained for finite automata. Secondly, based on the algebraic f...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/6719319 |
Summary: | This paper investigates the controllability, reachability, and stabilizability of finite automata by using the semitensor product of matrices. Firstly, by expressing the states, inputs, and outputs as vector forms, an algebraic form is obtained for finite automata. Secondly, based on the algebraic form, a controllability matrix is constructed for finite automata. Thirdly, some necessary and sufficient conditions are presented for the controllability, reachability, and stabilizability of finite automata by using the controllability matrix. Finally, an illustrative example is given to support the obtained new results. |
---|---|
ISSN: | 1024-123X 1563-5147 |