Towards realistic organ models for 3D printing and visualization

Three-dimensional visualizations and 3D-printed organs are used increasingly for teaching, surgery planning, patient education, and interventions. Hence, pipelines for the creation of the necessary geometric data from CT or MR images on a per-patient basis are needed. Furthermore, modern 3D printing...

Full description

Bibliographic Details
Main Authors: Kraft Valentin, Schumann Christian, Salzmann Daniela, Nopper Hans, Lück Thomas, Weyhe Dirk, Schenk Andrea
Format: Article
Language:English
Published: De Gruyter 2021-08-01
Series:Current Directions in Biomedical Engineering
Subjects:
Online Access:https://doi.org/10.1515/cdbme-2021-1036
Description
Summary:Three-dimensional visualizations and 3D-printed organs are used increasingly for teaching, surgery planning, patient education, and interventions. Hence, pipelines for the creation of the necessary geometric data from CT or MR images on a per-patient basis are needed. Furthermore, modern 3D printing techniques enable new possibilities for the models with regard to color, softness, and textures. However, to utilize these new features, the respective information has to be derived from the medical images in addition to the geometry of the relevant organ structures. In this work, we propose an automatable pipeline for the creation of realistic, patientspecific 3D-models for visualization and 3D printing in the context of liver surgery and discuss remaining challenges.
ISSN:2364-5504