A minimal descriptor of an ancestral recombinations graph

<p>Abstract</p> <p>Background</p> <p>Ancestral Recombinations Graph (ARG) is a phylogenetic structure that encodes both duplication events, such as mutations, as well as genetic exchange events, such as recombinations: this captures the (genetic) dynamics of a populatio...

Full description

Bibliographic Details
Main Authors: Palamara Pier, Parida Laxmi, Javed Asif
Format: Article
Language:English
Published: BMC 2011-02-01
Series:BMC Bioinformatics
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Ancestral Recombinations Graph (ARG) is a phylogenetic structure that encodes both duplication events, such as mutations, as well as genetic exchange events, such as recombinations: this captures the (genetic) dynamics of a population evolving over generations.</p> <p>Results</p> <p>In this paper, we identify structure-preserving and samples-preserving core of an ARG <it>G</it> and call it the minimal descriptor ARG of <it>G</it>. Its structure-preserving characteristic ensures that all the branch lengths of the marginal trees of the minimal descriptor ARG are identical to that of <it>G</it> and the samples-preserving property asserts that the patterns of genetic variation in the samples of the minimal descriptor ARG are exactly the same as that of <it>G</it>. We also prove that even an unbounded <it>G</it> has a finite minimal descriptor, that continues to preserve certain (graph-theoretic) properties of <it>G</it> and for an appropriate class of ARGs, our estimate (Eqn 8) as well as empirical observation is that the expected reduction in the number of vertices is exponential.</p> <p>Conclusions</p> <p>Based on the definition of this lossless and bounded structure, we derive local properties of the vertices of a minimal descriptor ARG, which lend itself very naturally to the design of efficient sampling algorithms. We further show that a class of minimal descriptors, that of binary ARGs, models the standard coalescent exactly (Thm 6).</p>
ISSN:1471-2105