Numerical simulation of Rapid Additive Forging (RAF) process

The Rapid Additive Forging (RAF) process is a Direct Energy Deposition (DED) Additive Manufacturing (AM) process, based on the deposition of a Titanium alloy on a substrate plate. This process has been developed for the production of Titanium parts of aeronautic components. In this study, a Finite E...

Full description

Bibliographic Details
Main Authors: Depradeux Lionel, Robitaille Corentin, Duval Gilles, Eckenfelder Luc, Locatelli Camille
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:MATEC Web of Conferences
Subjects:
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2020/17/matecconf_ti2019_03036.pdf
Description
Summary:The Rapid Additive Forging (RAF) process is a Direct Energy Deposition (DED) Additive Manufacturing (AM) process, based on the deposition of a Titanium alloy on a substrate plate. This process has been developed for the production of Titanium parts of aeronautic components. In this study, a Finite Element (FE) numerical simulation methodology has been established to perform a fast analysis of the RAF process, including full 3D-transient thermal-metallurgical and mechanical numerical simulations. Thus, residual stresses and distortions caused by the process can be estimated. Different modelling strategies have been compared in order to find a balance between computation time and accuracy. Analyses include the effects of phase transformations in the Titanium alloy. First analyses have been performed on a simple geometry of welding wall. The influences of the material activation modelling strategy on the thermal and mechanical results have been investigated. The effects of phase transformations on residual stresses and distortions are also discussed. Then a specimen with a more complex geometry has been considered in the analysis, including the effect of different deposition paths. A full 3D simulation of the whole deposition process has been compared with several simplified computation procedures, including a reduction of the number of layers considered in the simulation.
ISSN:2261-236X