Evaluation of the Effect of Polyethylene Glycol Addition on the Wetting Properties of ZnO Superhydrophobic Surfaces Prepared via Chemical Bath Deposition Method

A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morpholog...

Full description

Bibliographic Details
Main Authors: E. Velayi, R. Norouzbeigi
Format: Article
Language:fas
Published: Isfahan University of Technology 2018-03-01
Series:Journal of Advanced Materials in Engineering
Subjects:
Online Access:http://jame.iut.ac.ir/article-1-909-en.html
Description
Summary:A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ray Diffraction (XRD), stylus profilometer, Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and Raman Spectrometer. The microstructure studies showed that the addition of PEG led to formation of densely branched and uniform ZnO rods with a length of 1.5 µm and a diameter of about 95 nm on the substrate. The surface wettability studies confirmed that the sample prepared in the presence of hexamethylenetetramine (HMTA) and 0.05 mM PEG with branched tree-like micro/nanostructure exhibited excellent superhydrophobic properties with the water contact angle (WCA) of 158.2°±1.5° and contact angle hysteresis (CAH) of 3.5°. In addition, the superhydrophobic showed good  chemical stability in the pH range of 4 to 8.
ISSN:2251-600X
2423-5733