Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
The simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced da...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/14/3156 |
id |
doaj-ba29a5dde23f4cbb81e971a0e24424b1 |
---|---|
record_format |
Article |
spelling |
doaj-ba29a5dde23f4cbb81e971a0e24424b12020-11-25T03:01:04ZengMDPI AGMaterials1996-19442020-07-01133156315610.3390/ma13143156Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification FrameworkRobin Schulte0Richard Ostwald1Andreas Menzel2Institute of Mechanics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, GermanyInstitute of Mechanics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, GermanyInstitute of Mechanics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, GermanyThe simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced damage in a finite strain setting. The parameter identification scheme is applied to a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer, where so-called mechanophore units are incorporated within the polymeric microstructure. The present contribution, however, focuses on the purely mechanical response of the material, combining experiments with homogeneous and inhomogeneous states of deformation. In effect, the results provided lay the groundwork for a future extension of the proposed parameter identification framework, where additional field-data provided by the self-diagnostic capabilities can be incorporated into the optimisation scheme.https://www.mdpi.com/1996-1944/13/14/3156rate-dependent material behaviourgradient-enhanced damage at large strainsparameter identificationfinite elements |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Robin Schulte Richard Ostwald Andreas Menzel |
spellingShingle |
Robin Schulte Richard Ostwald Andreas Menzel Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework Materials rate-dependent material behaviour gradient-enhanced damage at large strains parameter identification finite elements |
author_facet |
Robin Schulte Richard Ostwald Andreas Menzel |
author_sort |
Robin Schulte |
title |
Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework |
title_short |
Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework |
title_full |
Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework |
title_fullStr |
Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework |
title_full_unstemmed |
Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework |
title_sort |
gradient-enhanced modelling of damage for rate-dependent material behaviour—a parameter identification framework |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2020-07-01 |
description |
The simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced damage in a finite strain setting. The parameter identification scheme is applied to a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer, where so-called mechanophore units are incorporated within the polymeric microstructure. The present contribution, however, focuses on the purely mechanical response of the material, combining experiments with homogeneous and inhomogeneous states of deformation. In effect, the results provided lay the groundwork for a future extension of the proposed parameter identification framework, where additional field-data provided by the self-diagnostic capabilities can be incorporated into the optimisation scheme. |
topic |
rate-dependent material behaviour gradient-enhanced damage at large strains parameter identification finite elements |
url |
https://www.mdpi.com/1996-1944/13/14/3156 |
work_keys_str_mv |
AT robinschulte gradientenhancedmodellingofdamageforratedependentmaterialbehaviouraparameteridentificationframework AT richardostwald gradientenhancedmodellingofdamageforratedependentmaterialbehaviouraparameteridentificationframework AT andreasmenzel gradientenhancedmodellingofdamageforratedependentmaterialbehaviouraparameteridentificationframework |
_version_ |
1724695177208004608 |