Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework

The simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced da...

Full description

Bibliographic Details
Main Authors: Robin Schulte, Richard Ostwald, Andreas Menzel
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/14/3156
id doaj-ba29a5dde23f4cbb81e971a0e24424b1
record_format Article
spelling doaj-ba29a5dde23f4cbb81e971a0e24424b12020-11-25T03:01:04ZengMDPI AGMaterials1996-19442020-07-01133156315610.3390/ma13143156Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification FrameworkRobin Schulte0Richard Ostwald1Andreas Menzel2Institute of Mechanics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, GermanyInstitute of Mechanics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, GermanyInstitute of Mechanics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, GermanyThe simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced damage in a finite strain setting. The parameter identification scheme is applied to a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer, where so-called mechanophore units are incorporated within the polymeric microstructure. The present contribution, however, focuses on the purely mechanical response of the material, combining experiments with homogeneous and inhomogeneous states of deformation. In effect, the results provided lay the groundwork for a future extension of the proposed parameter identification framework, where additional field-data provided by the self-diagnostic capabilities can be incorporated into the optimisation scheme.https://www.mdpi.com/1996-1944/13/14/3156rate-dependent material behaviourgradient-enhanced damage at large strainsparameter identificationfinite elements
collection DOAJ
language English
format Article
sources DOAJ
author Robin Schulte
Richard Ostwald
Andreas Menzel
spellingShingle Robin Schulte
Richard Ostwald
Andreas Menzel
Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
Materials
rate-dependent material behaviour
gradient-enhanced damage at large strains
parameter identification
finite elements
author_facet Robin Schulte
Richard Ostwald
Andreas Menzel
author_sort Robin Schulte
title Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
title_short Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
title_full Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
title_fullStr Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
title_full_unstemmed Gradient-Enhanced Modelling of Damage for Rate-Dependent Material Behaviour—A Parameter Identification Framework
title_sort gradient-enhanced modelling of damage for rate-dependent material behaviour—a parameter identification framework
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2020-07-01
description The simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced damage in a finite strain setting. The parameter identification scheme is applied to a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer, where so-called mechanophore units are incorporated within the polymeric microstructure. The present contribution, however, focuses on the purely mechanical response of the material, combining experiments with homogeneous and inhomogeneous states of deformation. In effect, the results provided lay the groundwork for a future extension of the proposed parameter identification framework, where additional field-data provided by the self-diagnostic capabilities can be incorporated into the optimisation scheme.
topic rate-dependent material behaviour
gradient-enhanced damage at large strains
parameter identification
finite elements
url https://www.mdpi.com/1996-1944/13/14/3156
work_keys_str_mv AT robinschulte gradientenhancedmodellingofdamageforratedependentmaterialbehaviouraparameteridentificationframework
AT richardostwald gradientenhancedmodellingofdamageforratedependentmaterialbehaviouraparameteridentificationframework
AT andreasmenzel gradientenhancedmodellingofdamageforratedependentmaterialbehaviouraparameteridentificationframework
_version_ 1724695177208004608