Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient
We deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem: -div(|∇u|p(x)-2∇u)+λ|u|p(x)-2u=Fu(x,u,v) in Ω, -div(|∇v|q(x)-2∇v)+λ|v|q(x)-2v=Fv(x,u,v) in Ω, ∂u/∂γ=0=∂v/∂γ on ∂Ω. We give several sufficient conditions for the existe...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/396704 |
id |
doaj-ba0ad574b33144c5a781be4648e3ebf7 |
---|---|
record_format |
Article |
spelling |
doaj-ba0ad574b33144c5a781be4648e3ebf72020-11-24T22:48:07ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/396704396704Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular CoefficientXianbin Wu0Junior College, Zhejiang Wanli University, Ningbo, Zhejiang 315100, ChinaWe deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem: -div(|∇u|p(x)-2∇u)+λ|u|p(x)-2u=Fu(x,u,v) in Ω, -div(|∇v|q(x)-2∇v)+λ|v|q(x)-2v=Fv(x,u,v) in Ω, ∂u/∂γ=0=∂v/∂γ on ∂Ω. We give several sufficient conditions for the existence of the constant sign solutions, when F(x,·,·) satisfies neither sub-(p(x),q(x)) growth condition, nor Ambrosetti-Rabinowitz condition (subcritical). In particular, we obtain the existence of eight constant sign solutions.http://dx.doi.org/10.1155/2014/396704 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xianbin Wu |
spellingShingle |
Xianbin Wu Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient Abstract and Applied Analysis |
author_facet |
Xianbin Wu |
author_sort |
Xianbin Wu |
title |
Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient |
title_short |
Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient |
title_full |
Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient |
title_fullStr |
Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient |
title_full_unstemmed |
Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient |
title_sort |
constant sign solutions for variable exponent system neumann boundary value problems with singular coefficient |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2014-01-01 |
description |
We deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem: -div(|∇u|p(x)-2∇u)+λ|u|p(x)-2u=Fu(x,u,v) in Ω, -div(|∇v|q(x)-2∇v)+λ|v|q(x)-2v=Fv(x,u,v) in Ω, ∂u/∂γ=0=∂v/∂γ on ∂Ω. We give several sufficient conditions for the existence of the constant sign solutions, when F(x,·,·) satisfies neither sub-(p(x),q(x)) growth condition, nor Ambrosetti-Rabinowitz condition (subcritical). In particular, we obtain the existence of eight constant sign solutions. |
url |
http://dx.doi.org/10.1155/2014/396704 |
work_keys_str_mv |
AT xianbinwu constantsignsolutionsforvariableexponentsystemneumannboundaryvalueproblemswithsingularcoefficient |
_version_ |
1725679682552070144 |