Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient

We deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem: -div(|∇u|p(x)-2∇u)+λ|u|p(x)-2u=Fu(x,u,v)  in  Ω, -div(|∇v|q(x)-2∇v)+λ|v|q(x)-2v=Fv(x,u,v) in Ω, ∂u/∂γ=0=∂v/∂γ  on  ∂Ω. We give several sufficient conditions for the existe...

Full description

Bibliographic Details
Main Author: Xianbin Wu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/396704
Description
Summary:We deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem: -div(|∇u|p(x)-2∇u)+λ|u|p(x)-2u=Fu(x,u,v)  in  Ω, -div(|∇v|q(x)-2∇v)+λ|v|q(x)-2v=Fv(x,u,v) in Ω, ∂u/∂γ=0=∂v/∂γ  on  ∂Ω. We give several sufficient conditions for the existence of the constant sign solutions, when F(x,·,·) satisfies neither sub-(p(x),q(x)) growth condition, nor Ambrosetti-Rabinowitz condition (subcritical). In particular, we obtain the existence of eight constant sign solutions.
ISSN:1085-3375
1687-0409