Cloud Service Scheduling Algorithm Research and Optimization
We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS). In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective functio...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2017-01-01
|
Series: | Security and Communication Networks |
Online Access: | http://dx.doi.org/10.1155/2017/2503153 |
Summary: | We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS). In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO) and a Genetic Algorithm (GA) to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO) are optimal. |
---|---|
ISSN: | 1939-0114 1939-0122 |