Shape effect of Cu-nanoparticles in unsteady flow through curved artery with catheterized stenosis

In this study the arterial flow of Cu-nanofluid through catheterized arteries having a balloon angioplasty with time-varying overlapping stenosis is considered. The nanofluid comprises different shaped nanoparticles such as bricks, cylinders and platelets. In the arteries the nature of Cu-blood nano...

Full description

Bibliographic Details
Main Authors: Ashfaq Ahmed, Sohail Nadeem
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379716304995
Description
Summary:In this study the arterial flow of Cu-nanofluid through catheterized arteries having a balloon angioplasty with time-varying overlapping stenosis is considered. The nanofluid comprises different shaped nanoparticles such as bricks, cylinders and platelets. In the arteries the nature of Cu-blood nanofluid is examined mathematically by considering it as a different shaped nanoparticles inclusion in viscous fluid in toroidal coordinate system. The problem is solved using a perturbation approximation in terms of a variant of curvature parameter (∊) to achieve the axial velocity, the stream function, the resistance impedance, and the wall shear stress distribution of nanofluid. Also, the results were obtained from explicit values of the physical parameters, such as the curvature parameter (∊), the balloon height (σ∗), the volume fraction (ϕ) and the shape factor of Cu-nanoparticles (m). The obtained results show that there is a notable difference between curvature and non-curvature annulus flows through catheterized stenosed arteries. The Platlets Cu-nanoparticle in the central portion of the tube are not sheared, and the slight velocity gradients are only found in the layers near the wall of artery than Bricks Cylinders Cu-nanoparticles. Keywords: Bricks Cu-nanoparticle, Cylinders Cu-nanoparticle, Platlets Cu-nanoparticle, Overlapping stenosis, Balloon angioplasty
ISSN:2211-3797