A Deformed Exponential Statistical Manifold

Consider <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> a probability measure and <inline-formula> <math display="inline"> <semantics> <msub> &...

Full description

Bibliographic Details
Main Authors: Francisca Leidmar Josué Vieira, Luiza Helena Félix de Andrade, Rui Facundo Vigelis, Charles Casimiro Cavalcante
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/5/496
id doaj-b9f1e89928e040a6ad0c5b57c2e2c79b
record_format Article
spelling doaj-b9f1e89928e040a6ad0c5b57c2e2c79b2020-11-24T21:29:03ZengMDPI AGEntropy1099-43002019-05-0121549610.3390/e21050496e21050496A Deformed Exponential Statistical ManifoldFrancisca Leidmar Josué Vieira0Luiza Helena Félix de Andrade1Rui Facundo Vigelis2Charles Casimiro Cavalcante3Departamento de Matemática, Universidade Regional do Cariri, Juazeiro do Norte-CE 63041-145, BrazilDepartamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-Árido, Mossoró-RN 59625-900, BrazilCurso de Engenharia de Computação, Campus Sobral, Universidade Federal do Ceará, Sobral-CE 62042-280, BrazilDepartamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza-CE 60020-181, BrazilConsider <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> a probability measure and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula> the set of <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula>-equivalent strictly positive probability densities. To endow <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula> with a structure of a <inline-formula> <math display="inline"> <semantics> <msup> <mi>C</mi> <mo>&#8734;</mo> </msup> </semantics> </math> </inline-formula>-Banach manifold we use the <inline-formula> <math display="inline"> <semantics> <mi>&#966;</mi> </semantics> </math> </inline-formula>-connection by an open arc, where <inline-formula> <math display="inline"> <semantics> <mi>&#966;</mi> </semantics> </math> </inline-formula> is a deformed exponential function which assumes zero until a certain point and from then on is strictly increasing. This deformed exponential function has as particular cases the <i>q</i>-deformed exponential and <inline-formula> <math display="inline"> <semantics> <mi>&#954;</mi> </semantics> </math> </inline-formula>-exponential functions. Moreover, we find the tangent space of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula> at a point <i>p</i>, and as a consequence the tangent bundle of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula>. We define a divergence using the <i>q</i>-exponential function and we prove that this divergence is related to the <i>q</i>-divergence already known from the literature. We also show that <i>q</i>-exponential and <inline-formula> <math display="inline"> <semantics> <mi>&#954;</mi> </semantics> </math> </inline-formula>-exponential functions can be used to generalize of R&#233;nyi divergence.https://www.mdpi.com/1099-4300/21/5/496deformed exponential manifoldstatistical manifold<i>φ</i>-familyinformation geometryexponential arcs
collection DOAJ
language English
format Article
sources DOAJ
author Francisca Leidmar Josué Vieira
Luiza Helena Félix de Andrade
Rui Facundo Vigelis
Charles Casimiro Cavalcante
spellingShingle Francisca Leidmar Josué Vieira
Luiza Helena Félix de Andrade
Rui Facundo Vigelis
Charles Casimiro Cavalcante
A Deformed Exponential Statistical Manifold
Entropy
deformed exponential manifold
statistical manifold
<i>φ</i>-family
information geometry
exponential arcs
author_facet Francisca Leidmar Josué Vieira
Luiza Helena Félix de Andrade
Rui Facundo Vigelis
Charles Casimiro Cavalcante
author_sort Francisca Leidmar Josué Vieira
title A Deformed Exponential Statistical Manifold
title_short A Deformed Exponential Statistical Manifold
title_full A Deformed Exponential Statistical Manifold
title_fullStr A Deformed Exponential Statistical Manifold
title_full_unstemmed A Deformed Exponential Statistical Manifold
title_sort deformed exponential statistical manifold
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2019-05-01
description Consider <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula> a probability measure and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula> the set of <inline-formula> <math display="inline"> <semantics> <mi>&#956;</mi> </semantics> </math> </inline-formula>-equivalent strictly positive probability densities. To endow <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula> with a structure of a <inline-formula> <math display="inline"> <semantics> <msup> <mi>C</mi> <mo>&#8734;</mo> </msup> </semantics> </math> </inline-formula>-Banach manifold we use the <inline-formula> <math display="inline"> <semantics> <mi>&#966;</mi> </semantics> </math> </inline-formula>-connection by an open arc, where <inline-formula> <math display="inline"> <semantics> <mi>&#966;</mi> </semantics> </math> </inline-formula> is a deformed exponential function which assumes zero until a certain point and from then on is strictly increasing. This deformed exponential function has as particular cases the <i>q</i>-deformed exponential and <inline-formula> <math display="inline"> <semantics> <mi>&#954;</mi> </semantics> </math> </inline-formula>-exponential functions. Moreover, we find the tangent space of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula> at a point <i>p</i>, and as a consequence the tangent bundle of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>&#956;</mi> </msub> </semantics> </math> </inline-formula>. We define a divergence using the <i>q</i>-exponential function and we prove that this divergence is related to the <i>q</i>-divergence already known from the literature. We also show that <i>q</i>-exponential and <inline-formula> <math display="inline"> <semantics> <mi>&#954;</mi> </semantics> </math> </inline-formula>-exponential functions can be used to generalize of R&#233;nyi divergence.
topic deformed exponential manifold
statistical manifold
<i>φ</i>-family
information geometry
exponential arcs
url https://www.mdpi.com/1099-4300/21/5/496
work_keys_str_mv AT franciscaleidmarjosuevieira adeformedexponentialstatisticalmanifold
AT luizahelenafelixdeandrade adeformedexponentialstatisticalmanifold
AT ruifacundovigelis adeformedexponentialstatisticalmanifold
AT charlescasimirocavalcante adeformedexponentialstatisticalmanifold
AT franciscaleidmarjosuevieira deformedexponentialstatisticalmanifold
AT luizahelenafelixdeandrade deformedexponentialstatisticalmanifold
AT ruifacundovigelis deformedexponentialstatisticalmanifold
AT charlescasimirocavalcante deformedexponentialstatisticalmanifold
_version_ 1725967718618759168