A Deformed Exponential Statistical Manifold
Consider <inline-formula> <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math> </inline-formula> a probability measure and <inline-formula> <math display="inline"> <semantics> <msub> &...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/21/5/496 |
id |
doaj-b9f1e89928e040a6ad0c5b57c2e2c79b |
---|---|
record_format |
Article |
spelling |
doaj-b9f1e89928e040a6ad0c5b57c2e2c79b2020-11-24T21:29:03ZengMDPI AGEntropy1099-43002019-05-0121549610.3390/e21050496e21050496A Deformed Exponential Statistical ManifoldFrancisca Leidmar Josué Vieira0Luiza Helena Félix de Andrade1Rui Facundo Vigelis2Charles Casimiro Cavalcante3Departamento de Matemática, Universidade Regional do Cariri, Juazeiro do Norte-CE 63041-145, BrazilDepartamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-Árido, Mossoró-RN 59625-900, BrazilCurso de Engenharia de Computação, Campus Sobral, Universidade Federal do Ceará, Sobral-CE 62042-280, BrazilDepartamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza-CE 60020-181, BrazilConsider <inline-formula> <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math> </inline-formula> a probability measure and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula> the set of <inline-formula> <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math> </inline-formula>-equivalent strictly positive probability densities. To endow <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula> with a structure of a <inline-formula> <math display="inline"> <semantics> <msup> <mi>C</mi> <mo>∞</mo> </msup> </semantics> </math> </inline-formula>-Banach manifold we use the <inline-formula> <math display="inline"> <semantics> <mi>φ</mi> </semantics> </math> </inline-formula>-connection by an open arc, where <inline-formula> <math display="inline"> <semantics> <mi>φ</mi> </semantics> </math> </inline-formula> is a deformed exponential function which assumes zero until a certain point and from then on is strictly increasing. This deformed exponential function has as particular cases the <i>q</i>-deformed exponential and <inline-formula> <math display="inline"> <semantics> <mi>κ</mi> </semantics> </math> </inline-formula>-exponential functions. Moreover, we find the tangent space of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula> at a point <i>p</i>, and as a consequence the tangent bundle of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula>. We define a divergence using the <i>q</i>-exponential function and we prove that this divergence is related to the <i>q</i>-divergence already known from the literature. We also show that <i>q</i>-exponential and <inline-formula> <math display="inline"> <semantics> <mi>κ</mi> </semantics> </math> </inline-formula>-exponential functions can be used to generalize of Rényi divergence.https://www.mdpi.com/1099-4300/21/5/496deformed exponential manifoldstatistical manifold<i>φ</i>-familyinformation geometryexponential arcs |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francisca Leidmar Josué Vieira Luiza Helena Félix de Andrade Rui Facundo Vigelis Charles Casimiro Cavalcante |
spellingShingle |
Francisca Leidmar Josué Vieira Luiza Helena Félix de Andrade Rui Facundo Vigelis Charles Casimiro Cavalcante A Deformed Exponential Statistical Manifold Entropy deformed exponential manifold statistical manifold <i>φ</i>-family information geometry exponential arcs |
author_facet |
Francisca Leidmar Josué Vieira Luiza Helena Félix de Andrade Rui Facundo Vigelis Charles Casimiro Cavalcante |
author_sort |
Francisca Leidmar Josué Vieira |
title |
A Deformed Exponential Statistical Manifold |
title_short |
A Deformed Exponential Statistical Manifold |
title_full |
A Deformed Exponential Statistical Manifold |
title_fullStr |
A Deformed Exponential Statistical Manifold |
title_full_unstemmed |
A Deformed Exponential Statistical Manifold |
title_sort |
deformed exponential statistical manifold |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2019-05-01 |
description |
Consider <inline-formula> <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math> </inline-formula> a probability measure and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula> the set of <inline-formula> <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math> </inline-formula>-equivalent strictly positive probability densities. To endow <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula> with a structure of a <inline-formula> <math display="inline"> <semantics> <msup> <mi>C</mi> <mo>∞</mo> </msup> </semantics> </math> </inline-formula>-Banach manifold we use the <inline-formula> <math display="inline"> <semantics> <mi>φ</mi> </semantics> </math> </inline-formula>-connection by an open arc, where <inline-formula> <math display="inline"> <semantics> <mi>φ</mi> </semantics> </math> </inline-formula> is a deformed exponential function which assumes zero until a certain point and from then on is strictly increasing. This deformed exponential function has as particular cases the <i>q</i>-deformed exponential and <inline-formula> <math display="inline"> <semantics> <mi>κ</mi> </semantics> </math> </inline-formula>-exponential functions. Moreover, we find the tangent space of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula> at a point <i>p</i>, and as a consequence the tangent bundle of <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">P</mi> <mi>μ</mi> </msub> </semantics> </math> </inline-formula>. We define a divergence using the <i>q</i>-exponential function and we prove that this divergence is related to the <i>q</i>-divergence already known from the literature. We also show that <i>q</i>-exponential and <inline-formula> <math display="inline"> <semantics> <mi>κ</mi> </semantics> </math> </inline-formula>-exponential functions can be used to generalize of Rényi divergence. |
topic |
deformed exponential manifold statistical manifold <i>φ</i>-family information geometry exponential arcs |
url |
https://www.mdpi.com/1099-4300/21/5/496 |
work_keys_str_mv |
AT franciscaleidmarjosuevieira adeformedexponentialstatisticalmanifold AT luizahelenafelixdeandrade adeformedexponentialstatisticalmanifold AT ruifacundovigelis adeformedexponentialstatisticalmanifold AT charlescasimirocavalcante adeformedexponentialstatisticalmanifold AT franciscaleidmarjosuevieira deformedexponentialstatisticalmanifold AT luizahelenafelixdeandrade deformedexponentialstatisticalmanifold AT ruifacundovigelis deformedexponentialstatisticalmanifold AT charlescasimirocavalcante deformedexponentialstatisticalmanifold |
_version_ |
1725967718618759168 |