An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classificati...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-24427-8 |
Summary: | Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classification accuracy across a range of datasets. |
---|---|
ISSN: | 2041-1723 |