On the Boundedness of the Fractional Bergman Operators

We give a necessary and sufficient condition for the boundedness of the Bergman fractional operators.

Bibliographic Details
Main Author: Benoît F. Sehba
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2017/8363478
id doaj-b9c9d1535aa141409ecd2d53194fcec8
record_format Article
spelling doaj-b9c9d1535aa141409ecd2d53194fcec82020-11-24T21:27:18ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092017-01-01201710.1155/2017/83634788363478On the Boundedness of the Fractional Bergman OperatorsBenoît F. Sehba0Department of Mathematics, University of Ghana, P.O. Box LG 62, Legon, Accra, GhanaWe give a necessary and sufficient condition for the boundedness of the Bergman fractional operators.http://dx.doi.org/10.1155/2017/8363478
collection DOAJ
language English
format Article
sources DOAJ
author Benoît F. Sehba
spellingShingle Benoît F. Sehba
On the Boundedness of the Fractional Bergman Operators
Abstract and Applied Analysis
author_facet Benoît F. Sehba
author_sort Benoît F. Sehba
title On the Boundedness of the Fractional Bergman Operators
title_short On the Boundedness of the Fractional Bergman Operators
title_full On the Boundedness of the Fractional Bergman Operators
title_fullStr On the Boundedness of the Fractional Bergman Operators
title_full_unstemmed On the Boundedness of the Fractional Bergman Operators
title_sort on the boundedness of the fractional bergman operators
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2017-01-01
description We give a necessary and sufficient condition for the boundedness of the Bergman fractional operators.
url http://dx.doi.org/10.1155/2017/8363478
work_keys_str_mv AT benoitfsehba ontheboundednessofthefractionalbergmanoperators
_version_ 1725975499046387712