Summary: | Three dimensional (3D) boundary-layer flow of viscous nanofluid has been investigated in the presence of Cattaneo–Christov double diffusion. A bi-directional linearly stretching sheet has been used to create the flow. Thermal and concentration diffusions are characterized by introducing Cattaneo–Christov fluxes. Novel attributes regarding Brownian motion and thermophoresis are retained. The conversion of nonlinear partial differential system to nonlinear ordinary differential system is done through suitable transformations. The resulting nonlinear systems are solved. Graphs have been sketched in order to investigate that how the temperature and concentration profiles are affected by distinct physical flow parameters. Further the skin friction and heat and mass transfer rates are numerically computed and discussed. Our findings depict that temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters. Keywords: Three-dimensional flow, Nanoparticles, Cattaneo–Christov double diffusion, Optimal homotopy analysis method (OHAM)
|