Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion

Three dimensional (3D) boundary-layer flow of viscous nanofluid has been investigated in the presence of Cattaneo–Christov double diffusion. A bi-directional linearly stretching sheet has been used to create the flow. Thermal and concentration diffusions are characterized by introducing Cattaneo–Chr...

Full description

Bibliographic Details
Main Authors: Tasawar Hayat, Taseer Muhammad, Ahmed Alsaedi, Bashir Ahmad
Format: Article
Language:English
Published: Elsevier 2016-01-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379716303060
Description
Summary:Three dimensional (3D) boundary-layer flow of viscous nanofluid has been investigated in the presence of Cattaneo–Christov double diffusion. A bi-directional linearly stretching sheet has been used to create the flow. Thermal and concentration diffusions are characterized by introducing Cattaneo–Christov fluxes. Novel attributes regarding Brownian motion and thermophoresis are retained. The conversion of nonlinear partial differential system to nonlinear ordinary differential system is done through suitable transformations. The resulting nonlinear systems are solved. Graphs have been sketched in order to investigate that how the temperature and concentration profiles are affected by distinct physical flow parameters. Further the skin friction and heat and mass transfer rates are numerically computed and discussed. Our findings depict that temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters. Keywords: Three-dimensional flow, Nanoparticles, Cattaneo–Christov double diffusion, Optimal homotopy analysis method (OHAM)
ISSN:2211-3797