Summary: | This work aims to address the design and control challenges caused by the integration of phenomena and the loss of degrees of freedom (DOF) that occur in the intensification of membrane reactor units. First, a novel approach to designing membrane reactor units is proposed. This approach consists of designing smaller modules based on specific phenomena such as heat exchange, reactions, and mass transport and combining them in series to produce the final modular membrane-based unit. This approach to designing membrane reactors is then assessed using a process operability analysis for the first time to maximize the operability index, as a way of quantifying the operational performance of intensified processes. This work demonstrates that by designing membrane reactors in this way, the operability of the original membrane reactor design can be significantly improved, translating to an improvement in achievability for a potential control structure implementation.
|