Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics

The ever-growing need for highly functional, compact, and integrated microfluidic devices often incurs lengthy and expensive manufacturing processes. Here, authors introduce a generalized 3D printing process that enables fast parallel fabrication of miniaturized, high resolution 3D components.

Bibliographic Details
Main Authors: Jose L. Sanchez Noriega, Nicholas A. Chartrand, Jonard Corpuz Valdoz, Collin G. Cribbs, Dallin A. Jacobs, Daniel Poulson, Matthew S. Viglione, Adam T. Woolley, Pam M. Van Ry, Kenneth A. Christensen, Gregory P. Nordin
Format: Article
Language:English
Published: Nature Publishing Group 2021-09-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-25788-w
id doaj-b99f1488a268491db2c0a7428bb4835d
record_format Article
spelling doaj-b99f1488a268491db2c0a7428bb4835d2021-09-19T11:49:43ZengNature Publishing GroupNature Communications2041-17232021-09-0112111310.1038/s41467-021-25788-wSpatially and optically tailored 3D printing for highly miniaturized and integrated microfluidicsJose L. Sanchez Noriega0Nicholas A. Chartrand1Jonard Corpuz Valdoz2Collin G. Cribbs3Dallin A. Jacobs4Daniel Poulson5Matthew S. Viglione6Adam T. Woolley7Pam M. Van Ry8Kenneth A. Christensen9Gregory P. Nordin10Electrical and Computer Engineering Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityElectrical and Computer Engineering Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityChemistry and Biochemistry Department, Brigham Young UniversityElectrical and Computer Engineering Department, Brigham Young UniversityThe ever-growing need for highly functional, compact, and integrated microfluidic devices often incurs lengthy and expensive manufacturing processes. Here, authors introduce a generalized 3D printing process that enables fast parallel fabrication of miniaturized, high resolution 3D components.https://doi.org/10.1038/s41467-021-25788-w
collection DOAJ
language English
format Article
sources DOAJ
author Jose L. Sanchez Noriega
Nicholas A. Chartrand
Jonard Corpuz Valdoz
Collin G. Cribbs
Dallin A. Jacobs
Daniel Poulson
Matthew S. Viglione
Adam T. Woolley
Pam M. Van Ry
Kenneth A. Christensen
Gregory P. Nordin
spellingShingle Jose L. Sanchez Noriega
Nicholas A. Chartrand
Jonard Corpuz Valdoz
Collin G. Cribbs
Dallin A. Jacobs
Daniel Poulson
Matthew S. Viglione
Adam T. Woolley
Pam M. Van Ry
Kenneth A. Christensen
Gregory P. Nordin
Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
Nature Communications
author_facet Jose L. Sanchez Noriega
Nicholas A. Chartrand
Jonard Corpuz Valdoz
Collin G. Cribbs
Dallin A. Jacobs
Daniel Poulson
Matthew S. Viglione
Adam T. Woolley
Pam M. Van Ry
Kenneth A. Christensen
Gregory P. Nordin
author_sort Jose L. Sanchez Noriega
title Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
title_short Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
title_full Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
title_fullStr Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
title_full_unstemmed Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
title_sort spatially and optically tailored 3d printing for highly miniaturized and integrated microfluidics
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-09-01
description The ever-growing need for highly functional, compact, and integrated microfluidic devices often incurs lengthy and expensive manufacturing processes. Here, authors introduce a generalized 3D printing process that enables fast parallel fabrication of miniaturized, high resolution 3D components.
url https://doi.org/10.1038/s41467-021-25788-w
work_keys_str_mv AT joselsancheznoriega spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT nicholasachartrand spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT jonardcorpuzvaldoz spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT collingcribbs spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT dallinajacobs spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT danielpoulson spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT matthewsviglione spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT adamtwoolley spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT pammvanry spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT kennethachristensen spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
AT gregorypnordin spatiallyandopticallytailored3dprintingforhighlyminiaturizedandintegratedmicrofluidics
_version_ 1717375445664530432