Bifurcation of a Fractional-Order Delayed Malware Propagation Model in Social Networks
In recent years, with the rapid development of the Internet and the Internet of Things, network security is urgently needed. Malware becomes a major threat to network security. Thus, the study on malware propagation model plays an important role in network security. In the past few decades, numerous...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2019/7057052 |
Summary: | In recent years, with the rapid development of the Internet and the Internet of Things, network security is urgently needed. Malware becomes a major threat to network security. Thus, the study on malware propagation model plays an important role in network security. In the past few decades, numerous researchers put up various kinds of malware propagation models to analyze the dynamic interaction. However, many works are only concerned with the integer-order malware propagation models, while the investigation on fractional-order ones is very few. In this paper, based on the earlier works, we will put up a new fractional-order delayed malware propagation model. Letting the delay be bifurcation parameter and analyzing the corresponding characteristic equations of considered system, we will establish a set of new sufficient conditions to guarantee the stability and the existence of Hopf bifurcation of fractional-order delayed malware propagation model. The study shows that the delay and the fractional order have important effect on the stability and Hopf bifurcation of considered system. To check the correctness of theoretical analyses, we carry out some computer simulations. At last, a simple conclusion is drawn. The derived results of this paper are completely innovative and play an important guiding role in network security. |
---|---|
ISSN: | 1026-0226 1607-887X |