Correlation between the Joint Roughness Coefficient and Rock Joint Statistical Parameters at Different Sampling Intervals

Joint roughness coefficient (JRC) is a major factor that affects the mechanical properties of rock joints. Statistical methods that are used to calculate the JRC increasingly depend on a sampling interval (Δx). The variation rules of fitting parameters a, b, and b/a at different Δx values were analy...

Full description

Bibliographic Details
Main Authors: Man Huang, Cia-chu Xia, Peng Sha, Cheng-rong Ma, Shi-gui Du
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2019/1643842
Description
Summary:Joint roughness coefficient (JRC) is a major factor that affects the mechanical properties of rock joints. Statistical methods that are used to calculate the JRC increasingly depend on a sampling interval (Δx). The variation rules of fitting parameters a, b, and b/a at different Δx values were analyzed on the basis of the relationship between the JRC and statistical parameter Z2. The relationship between the fitting parameters a and b was deduced in accordance with the ten standard profiles proposed by Barton. Empirical formulas for the JRC, Z2, and Δx were also established. The estimation accuracy of the JRC was the highest in the analysis of Δx values within 0.1–5.0 mm. JRC tests were conducted through inverse value comparative analysis. Results showed that the outcome calculated using the general formula and the JRC inverse values demonstrate improved agreement and verify the rationality of the general formula. The proposed formula can perform rapid and simple JRC calculation within the Δx range of 0.1–5.0 mm using Z2, thereby indicating favorable application prospects.
ISSN:1687-8086
1687-8094