Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes

Background & objectives: Aedes albopictus (Skuse) is one of the major vectors of dengue which is an emerging threat in Northeast part of India. The morphological characterisation of mosquitoes is time consuming and lacks accuracy for distinguishing closely related species. Hence, molecular metho...

Full description

Bibliographic Details
Main Authors: Momi Das, Manuj K Das, Prafulla Dutta
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2016-01-01
Series:Journal of Vector Borne Diseases
Subjects:
Online Access:http://www.jvbd.org/article.asp?issn=0972-9062;year=2016;volume=53;issue=3;spage=240;epage=247;aulast=Das
id doaj-b957106b399941179560ac90b8e647d8
record_format Article
spelling doaj-b957106b399941179560ac90b8e647d82020-11-24T22:58:28ZengWolters Kluwer Medknow PublicationsJournal of Vector Borne Diseases0972-90622016-01-01533240247Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genesMomi DasManuj K DasPrafulla DuttaBackground & objectives: Aedes albopictus (Skuse) is one of the major vectors of dengue which is an emerging threat in Northeast part of India. The morphological characterisation of mosquitoes is time consuming and lacks accuracy for distinguishing closely related species. Hence, molecular methods of mosquito identification, genetic diversity and molecular phylogeny have gained increased importance. This study was aimed to identify and characterize the most abundant species of Aedes vectors collected from different breeding spots in Assam, Northeast India employing molecular as well as bioinformatics tools. Methods: Ae. albopictus species was genetically characterized with internal transcribed spacer1 (ITS1) and cytochrome c oxidase subunit I (COI) genes and sequence analysis was carried out following molecular methods like PCR amplification, DNA sequencing and multiple sequence analysis. Maximum likelihood molecular phylogeny was reconstructed to define the evolutionary relationship among studied isolates and isolates from other parts of Southeast Asia. Results: Molecular study revealed that all five subject specimens belonged to Ae. albopictus species as per both ITS1 and COI genes. Maximum likelihood tree based on ITS1 and COI genes showed that isolates were distinctly grouped into separate clusters. Almost similar pattern of amino acid frequencies in COI gene was found amongst the five studied isolates. However, amino acid frequency in ITS1 gene was found to be dissimilar, indicating polymorphisms in this gene, among the isolates. Interpretation & conclusion: This is the first report among the Northeastern states of India describing the genetic make-up of Ae. albopictus species by virtue of highly conserved mitochondrial (mt) DNA and ribosomal (r) DNA gene sequences. This study also illustrates that the sequence diversity of these two genes in this mosquito species differs geographically which differentiate a population and brings unique identity.http://www.jvbd.org/article.asp?issn=0972-9062;year=2016;volume=53;issue=3;spage=240;epage=247;aulast=DasAedes albopictus; COI; ITS1; molecular phylogeny; sequence analysis
collection DOAJ
language English
format Article
sources DOAJ
author Momi Das
Manuj K Das
Prafulla Dutta
spellingShingle Momi Das
Manuj K Das
Prafulla Dutta
Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes
Journal of Vector Borne Diseases
Aedes albopictus; COI; ITS1; molecular phylogeny; sequence analysis
author_facet Momi Das
Manuj K Das
Prafulla Dutta
author_sort Momi Das
title Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes
title_short Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes
title_full Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes
title_fullStr Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes
title_full_unstemmed Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes
title_sort genetic characterization and molecular phylogeny of aedes albopictus (skuse) species from sonitpur district of assam, india based on coi and its1 genes
publisher Wolters Kluwer Medknow Publications
series Journal of Vector Borne Diseases
issn 0972-9062
publishDate 2016-01-01
description Background & objectives: Aedes albopictus (Skuse) is one of the major vectors of dengue which is an emerging threat in Northeast part of India. The morphological characterisation of mosquitoes is time consuming and lacks accuracy for distinguishing closely related species. Hence, molecular methods of mosquito identification, genetic diversity and molecular phylogeny have gained increased importance. This study was aimed to identify and characterize the most abundant species of Aedes vectors collected from different breeding spots in Assam, Northeast India employing molecular as well as bioinformatics tools. Methods: Ae. albopictus species was genetically characterized with internal transcribed spacer1 (ITS1) and cytochrome c oxidase subunit I (COI) genes and sequence analysis was carried out following molecular methods like PCR amplification, DNA sequencing and multiple sequence analysis. Maximum likelihood molecular phylogeny was reconstructed to define the evolutionary relationship among studied isolates and isolates from other parts of Southeast Asia. Results: Molecular study revealed that all five subject specimens belonged to Ae. albopictus species as per both ITS1 and COI genes. Maximum likelihood tree based on ITS1 and COI genes showed that isolates were distinctly grouped into separate clusters. Almost similar pattern of amino acid frequencies in COI gene was found amongst the five studied isolates. However, amino acid frequency in ITS1 gene was found to be dissimilar, indicating polymorphisms in this gene, among the isolates. Interpretation & conclusion: This is the first report among the Northeastern states of India describing the genetic make-up of Ae. albopictus species by virtue of highly conserved mitochondrial (mt) DNA and ribosomal (r) DNA gene sequences. This study also illustrates that the sequence diversity of these two genes in this mosquito species differs geographically which differentiate a population and brings unique identity.
topic Aedes albopictus; COI; ITS1; molecular phylogeny; sequence analysis
url http://www.jvbd.org/article.asp?issn=0972-9062;year=2016;volume=53;issue=3;spage=240;epage=247;aulast=Das
work_keys_str_mv AT momidas geneticcharacterizationandmolecularphylogenyofaedesalbopictusskusespeciesfromsonitpurdistrictofassamindiabasedoncoiandits1genes
AT manujkdas geneticcharacterizationandmolecularphylogenyofaedesalbopictusskusespeciesfromsonitpurdistrictofassamindiabasedoncoiandits1genes
AT prafulladutta geneticcharacterizationandmolecularphylogenyofaedesalbopictusskusespeciesfromsonitpurdistrictofassamindiabasedoncoiandits1genes
_version_ 1725647039430131712