On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane

<p/> <p>We continue the study of algebraic difference equations of the type <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it&g...

Full description

Bibliographic Details
Main Authors: Rogalski M, Bastien G
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2005/948567
id doaj-b951689de315478195a877d989866546
record_format Article
spelling doaj-b951689de315478195a877d9898665462020-11-25T00:20:33ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472005-01-0120053948567On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the planeRogalski MBastien G<p/> <p>We continue the study of algebraic difference equations of the type <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>), which started in a previous paper. Here we study the case where the algebraic curves related to the equations are quartics <it>Q</it>(<it>K</it>) of the plane. We prove, as in "on some algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i2.gif"/></inline-formula>, related to families of conics or cubics: generalization of the Lyness' sequences" (2004), that the solutions <it>M</it><sub><it>n</it></sub> = (<it>u</it><sub><it>n</it>+1</sub>, <it>u</it><sub><it>n</it></sub>) are persistent and bounded, move on the positive component <it>Q</it><sup>0</sup>(<it>K</it>) of the quartic <it>Q</it>(<it>K</it>) which passes through <it>M</it><sub>0</sub>, and diverge if <it>M</it><sub>0</sub> is not the equilibrium, which is locally stable. In fact, we study the dynamical system <it>F</it>(<it>x</it>, <it>y</it>) = ((<it>a</it> + <it>bx</it> + <it>cx</it><sup>2</sup>)/<it>y</it>(<it>c</it> + <it>dx</it> + <it>x</it><sup>2</sup>), <it>x</it>), (<it>a</it>, <it>b</it>, <it>c</it>, <it>d</it>) &#8712; &#8477;<sup>+4</sup>, <it>a</it> + <it>b</it> &gt; 0, <it>b</it> + <it>c</it> + <it>d</it> &gt; 0, in <inline-formula><graphic file="1687-1847-2005-948567-i3.gif"/></inline-formula>, and show that its restriction to <it>Q</it><sup>0</sup> (<it>K</it>) is conjugated to a rotation on the circle. We give the possible periods of solutions, and study their global behavior, such as the density of initial periodic points, the density of trajectories in some curves, and a form of sensitivity to initial conditions. We prove a dichotomy between a form of pointwise chaotic behavior and the existence of a common minimal period to all nonconstant orbits of <it>F</it>.</p>http://www.advancesindifferenceequations.com/content/2005/948567
collection DOAJ
language English
format Article
sources DOAJ
author Rogalski M
Bastien G
spellingShingle Rogalski M
Bastien G
On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
Advances in Difference Equations
author_facet Rogalski M
Bastien G
author_sort Rogalski M
title On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
title_short On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
title_full On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
title_fullStr On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
title_full_unstemmed On the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
title_sort on the algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i1.gif"/></inline-formula>, related to a family of elliptic quartics in the plane
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2005-01-01
description <p/> <p>We continue the study of algebraic difference equations of the type <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>), which started in a previous paper. Here we study the case where the algebraic curves related to the equations are quartics <it>Q</it>(<it>K</it>) of the plane. We prove, as in "on some algebraic difference equations <it>u</it><sub><it>n</it>+2</sub><it>u</it><sub><it>n</it></sub> = <it>&#968;</it>(<it>u</it><sub><it>n</it>+1</sub>) in <inline-formula><graphic file="1687-1847-2005-948567-i2.gif"/></inline-formula>, related to families of conics or cubics: generalization of the Lyness' sequences" (2004), that the solutions <it>M</it><sub><it>n</it></sub> = (<it>u</it><sub><it>n</it>+1</sub>, <it>u</it><sub><it>n</it></sub>) are persistent and bounded, move on the positive component <it>Q</it><sup>0</sup>(<it>K</it>) of the quartic <it>Q</it>(<it>K</it>) which passes through <it>M</it><sub>0</sub>, and diverge if <it>M</it><sub>0</sub> is not the equilibrium, which is locally stable. In fact, we study the dynamical system <it>F</it>(<it>x</it>, <it>y</it>) = ((<it>a</it> + <it>bx</it> + <it>cx</it><sup>2</sup>)/<it>y</it>(<it>c</it> + <it>dx</it> + <it>x</it><sup>2</sup>), <it>x</it>), (<it>a</it>, <it>b</it>, <it>c</it>, <it>d</it>) &#8712; &#8477;<sup>+4</sup>, <it>a</it> + <it>b</it> &gt; 0, <it>b</it> + <it>c</it> + <it>d</it> &gt; 0, in <inline-formula><graphic file="1687-1847-2005-948567-i3.gif"/></inline-formula>, and show that its restriction to <it>Q</it><sup>0</sup> (<it>K</it>) is conjugated to a rotation on the circle. We give the possible periods of solutions, and study their global behavior, such as the density of initial periodic points, the density of trajectories in some curves, and a form of sensitivity to initial conditions. We prove a dichotomy between a form of pointwise chaotic behavior and the existence of a common minimal period to all nonconstant orbits of <it>F</it>.</p>
url http://www.advancesindifferenceequations.com/content/2005/948567
work_keys_str_mv AT rogalskim onthealgebraicdifferenceequationsituitsubitnit2subituitsubitnitsubit968itituitsubitnit1subininlineformulagraphicfile168718472005948567i1gifinlineformularelatedtoafamilyofellipticquarticsintheplane
AT bastieng onthealgebraicdifferenceequationsituitsubitnit2subituitsubitnitsubit968itituitsubitnit1subininlineformulagraphicfile168718472005948567i1gifinlineformularelatedtoafamilyofellipticquarticsintheplane
_version_ 1725366638027472896