Identifying robust hysteresis in networks.
We present a new modeling and computational tool that computes rigorous summaries of network dynamics over large sets of parameter values. These summaries, organized in a database, can be searched for observed dynamics, e.g., bistability and hysteresis, to discover parameter regimes over which they...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-04-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1006121 |
Summary: | We present a new modeling and computational tool that computes rigorous summaries of network dynamics over large sets of parameter values. These summaries, organized in a database, can be searched for observed dynamics, e.g., bistability and hysteresis, to discover parameter regimes over which they are supported. We illustrate our approach on several networks underlying the restriction point of the cell cycle in humans and yeast. We rank networks by how robustly they support hysteresis, which is the observed phenotype. We find that the best 6-node human network and the yeast network share similar topology and robustness of hysteresis, in spite of having no homology between the corresponding nodes of the network. Our approach provides a new tool linking network structure and dynamics. |
---|---|
ISSN: | 1553-734X 1553-7358 |