A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations

The even order neutral differential equation $$\frac{d^n}{dt^n} [ x(t) + \lambda x(t-\tau) ] + f(t,x(g(t))) = 0\tag{1.1}$$ is considered under the following conditions: $n\ge 2$ is even; $\lambda>0$; $\tau>0$; $g \in C[t_0,\infty)$, $\lim_{t\to\infty} g(t) = \infty$; $f \in C([t_0,\infty) \ti...

Full description

Bibliographic Details
Main Author: Satoshi Tanaka
Format: Article
Language:English
Published: University of Szeged 2000-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=59
id doaj-b93ac6e79ffa4ca3b10580410bae8616
record_format Article
spelling doaj-b93ac6e79ffa4ca3b10580410bae86162021-07-14T07:21:17ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752000-01-012000412710.14232/ejqtde.2000.1.459A necessary and sufficient condition for the oscillation in a class of even order neutral differential equationsSatoshi Tanaka0Okayama University of Science, Okayama, JapanThe even order neutral differential equation $$\frac{d^n}{dt^n} [ x(t) + \lambda x(t-\tau) ] + f(t,x(g(t))) = 0\tag{1.1}$$ is considered under the following conditions: $n\ge 2$ is even; $\lambda>0$; $\tau>0$; $g \in C[t_0,\infty)$, $\lim_{t\to\infty} g(t) = \infty$; $f \in C([t_0,\infty) \times {\bf R})$, $u f(t,u) \ge 0$ for $(t,u) \in [t_0,\infty) \times {\bf R}$, and $f(t,u)$ is nondecreasing in $u \in {\bf R}$ for each fixed $t\ge t_0$. It is shown that equation (1.1) is oscillatory if and only if the non-neutral differential equation $$x^{(n)}(t) + \frac{1}{1+\lambda} f(t,x(g(t))) = 0$$ is oscillatory.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=59
collection DOAJ
language English
format Article
sources DOAJ
author Satoshi Tanaka
spellingShingle Satoshi Tanaka
A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Satoshi Tanaka
author_sort Satoshi Tanaka
title A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
title_short A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
title_full A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
title_fullStr A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
title_full_unstemmed A necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
title_sort necessary and sufficient condition for the oscillation in a class of even order neutral differential equations
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2000-01-01
description The even order neutral differential equation $$\frac{d^n}{dt^n} [ x(t) + \lambda x(t-\tau) ] + f(t,x(g(t))) = 0\tag{1.1}$$ is considered under the following conditions: $n\ge 2$ is even; $\lambda>0$; $\tau>0$; $g \in C[t_0,\infty)$, $\lim_{t\to\infty} g(t) = \infty$; $f \in C([t_0,\infty) \times {\bf R})$, $u f(t,u) \ge 0$ for $(t,u) \in [t_0,\infty) \times {\bf R}$, and $f(t,u)$ is nondecreasing in $u \in {\bf R}$ for each fixed $t\ge t_0$. It is shown that equation (1.1) is oscillatory if and only if the non-neutral differential equation $$x^{(n)}(t) + \frac{1}{1+\lambda} f(t,x(g(t))) = 0$$ is oscillatory.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=59
work_keys_str_mv AT satoshitanaka anecessaryandsufficientconditionfortheoscillationinaclassofevenorderneutraldifferentialequations
AT satoshitanaka necessaryandsufficientconditionfortheoscillationinaclassofevenorderneutraldifferentialequations
_version_ 1721303966869880832