A typical graph structure of a ring
The zero-divisor graph of a commutative ring R with respect to nilpotent elements is a simple undirected graph $Gamma_N^*(R)$ with vertex set Z_N(R)*, and two vertices x and y are adjacent if and only if xy is nilpotent and xy is nonzero, where Z_N(R)={x in R: xy is nilpotent, for some y in R^*}. In...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2015-06-01
|
Series: | Transactions on Combinatorics |
Subjects: | |
Online Access: | http://www.combinatorics.ir/pdf_6177_95c66f3ddffbab1d427f14e4b0d0e823.html |