Impact of age-specific immunity on the timing and burden of the next Zika virus outbreak.

The 2015-2017 epidemics of Zika virus (ZIKV) in the Americas caused widespread infection, followed by protective immunity. The timing and burden of the next Zika virus outbreak remains unclear. We used an agent-based model to simulate the dynamics of age-specific immunity to ZIKV, and predict the fu...

Full description

Bibliographic Details
Main Authors: Michel J Counotte, Christian L Althaus, Nicola Low, Julien Riou
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-12-01
Series:PLoS Neglected Tropical Diseases
Online Access:https://doi.org/10.1371/journal.pntd.0007978
Description
Summary:The 2015-2017 epidemics of Zika virus (ZIKV) in the Americas caused widespread infection, followed by protective immunity. The timing and burden of the next Zika virus outbreak remains unclear. We used an agent-based model to simulate the dynamics of age-specific immunity to ZIKV, and predict the future age-specific risk using data from Managua, Nicaragua. We also investigated the potential impact of a ZIKV vaccine. Assuming lifelong immunity, the risk of a ZIKV outbreak will remain low until 2035 and rise above 50% in 2047. The imbalance in age-specific immunity implies that people in the 15-29 age range will be at highest risk of infection during the next ZIKV outbreak, increasing the expected number of congenital abnormalities. ZIKV vaccine development and licensure are urgent to attain the maximum benefit in reducing the population-level risk of infection and the risk of adverse congenital outcomes. This urgency increases if immunity is not lifelong.
ISSN:1935-2727
1935-2735