Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>

For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES from &...

Full description

Bibliographic Details
Main Authors: Chunmeng Xu, Lingjun Tang, Youxiang Liang, Song Jiao, Huimin Yu, Hui Luo
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/25/4/1002
id doaj-b913a23b66fd4a9697cef6edebf4b5c9
record_format Article
spelling doaj-b913a23b66fd4a9697cef6edebf4b5c92020-11-25T02:09:20ZengMDPI AGMolecules1420-30492020-02-01254100210.3390/molecules25041002molecules25041002Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>Chunmeng Xu0Lingjun Tang1Youxiang Liang2Song Jiao3Huimin Yu4Hui Luo5Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, ChinaKey Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, ChinaKey Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, ChinaKey Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, ChinaKey Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing 100084, ChinaDepartment of Biological Science and Engineering, University of Science and Technology Beijing, Beijing 100083, ChinaFor large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES from <i>Rhodococcus ruber</i>, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, <i>E. coli</i> and <i>R. ruber</i>. In the <i>E. coli</i> host, fusion expression of nitrilase with either <i>Rr</i>GroES or <i>Rr</i>GroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32&#8722;47% reduction). The co-expression strategy was applied in <i>R. ruber</i> via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the <i>R. ruber</i> genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of <i>Rr</i>GroES or <i>Rr</i>GroEL with a plasmid, the engineered strains <i>R. ruber</i> TH3 dNHase::<i>Rr</i>Nit (pNV18.1-P<i>ami</i>-<i>Rr</i>Nit-P<i>ami</i>-<i>Rr</i>GroES) and TH3 dNHase::<i>Rr</i>Nit (pNV18.1-P<i>ami</i>-<i>Rr</i>Nit-P<i>ami</i>-<i>Rr</i>GroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the <i>Rr</i>GroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-P<i>ami</i>-<i>Rr</i>Nit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts.https://www.mdpi.com/1420-3049/25/4/1002nitrilasechaperonestability<i>e. coli</i><i>r. ruber</i>
collection DOAJ
language English
format Article
sources DOAJ
author Chunmeng Xu
Lingjun Tang
Youxiang Liang
Song Jiao
Huimin Yu
Hui Luo
spellingShingle Chunmeng Xu
Lingjun Tang
Youxiang Liang
Song Jiao
Huimin Yu
Hui Luo
Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>
Molecules
nitrilase
chaperone
stability
<i>e. coli</i>
<i>r. ruber</i>
author_facet Chunmeng Xu
Lingjun Tang
Youxiang Liang
Song Jiao
Huimin Yu
Hui Luo
author_sort Chunmeng Xu
title Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>
title_short Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>
title_full Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>
title_fullStr Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>
title_full_unstemmed Novel Chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES for Activity and Stability Enhancement of Nitrilase in <i>Escherichia coli</i> and <i>Rhodococcus ruber</i>
title_sort novel chaperones <i>rr</i>groel and <i>rr</i>groes for activity and stability enhancement of nitrilase in <i>escherichia coli</i> and <i>rhodococcus ruber</i>
publisher MDPI AG
series Molecules
issn 1420-3049
publishDate 2020-02-01
description For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones <i>Rr</i>GroEL and <i>Rr</i>GroES from <i>Rhodococcus ruber</i>, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, <i>E. coli</i> and <i>R. ruber</i>. In the <i>E. coli</i> host, fusion expression of nitrilase with either <i>Rr</i>GroES or <i>Rr</i>GroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32&#8722;47% reduction). The co-expression strategy was applied in <i>R. ruber</i> via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the <i>R. ruber</i> genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of <i>Rr</i>GroES or <i>Rr</i>GroEL with a plasmid, the engineered strains <i>R. ruber</i> TH3 dNHase::<i>Rr</i>Nit (pNV18.1-P<i>ami</i>-<i>Rr</i>Nit-P<i>ami</i>-<i>Rr</i>GroES) and TH3 dNHase::<i>Rr</i>Nit (pNV18.1-P<i>ami</i>-<i>Rr</i>Nit-P<i>ami</i>-<i>Rr</i>GroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the <i>Rr</i>GroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-P<i>ami</i>-<i>Rr</i>Nit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts.
topic nitrilase
chaperone
stability
<i>e. coli</i>
<i>r. ruber</i>
url https://www.mdpi.com/1420-3049/25/4/1002
work_keys_str_mv AT chunmengxu novelchaperonesirrigroelandirrigroesforactivityandstabilityenhancementofnitrilaseiniescherichiacoliiandirhodococcusruberi
AT lingjuntang novelchaperonesirrigroelandirrigroesforactivityandstabilityenhancementofnitrilaseiniescherichiacoliiandirhodococcusruberi
AT youxiangliang novelchaperonesirrigroelandirrigroesforactivityandstabilityenhancementofnitrilaseiniescherichiacoliiandirhodococcusruberi
AT songjiao novelchaperonesirrigroelandirrigroesforactivityandstabilityenhancementofnitrilaseiniescherichiacoliiandirhodococcusruberi
AT huiminyu novelchaperonesirrigroelandirrigroesforactivityandstabilityenhancementofnitrilaseiniescherichiacoliiandirhodococcusruberi
AT huiluo novelchaperonesirrigroelandirrigroesforactivityandstabilityenhancementofnitrilaseiniescherichiacoliiandirhodococcusruberi
_version_ 1724924433286561792