A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis

<p>Abstract</p> <p>Background</p> <p>The success achieved by genome-wide association (GWA) studies in the identification of candidate loci for complex diseases has been accompanied by an inability to explain the bulk of heritability. Here, we describe the algorithm V-Ba...

Full description

Bibliographic Details
Main Authors: Mezey Jason G, Hoffman Gabriel E, Logsdon Benjamin A
Format: Article
Language:English
Published: BMC 2010-01-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/11/58
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The success achieved by genome-wide association (GWA) studies in the identification of candidate loci for complex diseases has been accompanied by an inability to explain the bulk of heritability. Here, we describe the algorithm V-Bay, a variational Bayes algorithm for multiple locus GWA analysis, which is designed to identify weaker associations that may contribute to this missing heritability.</p> <p>Results</p> <p>V-Bay provides a novel solution to the computational scaling constraints of most multiple locus methods and can complete a simultaneous analysis of a million genetic markers in a few hours, when using a desktop. Using a range of simulated genetic and GWA experimental scenarios, we demonstrate that V-Bay is highly accurate, and reliably identifies associations that are too weak to be discovered by single-marker testing approaches. V-Bay can also outperform a multiple locus analysis method based on the lasso, which has similar scaling properties for large numbers of genetic markers. For demonstration purposes, we also use V-Bay to confirm associations with gene expression in cell lines derived from the Phase II individuals of HapMap.</p> <p>Conclusions</p> <p>V-Bay is a versatile, fast, and accurate multiple locus GWA analysis tool for the practitioner interested in identifying weaker associations without high false positive rates.</p>
ISSN:1471-2105